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Background: After two decades of transcranial direct current stimulation (tDCS) research, it is still un-
clear which applications benefit most from which tDCS protocols. One prospect is the acceleration of
learning, where previous work has demonstrated that anodal tDCS applied to the right ventrolateral
prefrontal cortex (rVLPFC) is capable of doubling the rate of learning in a visual camouflaged threat
detection and category learning task.
Goals: Questions remain as to the specific cognitive mechanisms underlying this learning enhancement,
and whether it generalizes to other tasks. The goal of the current project was to expand previous findings
by employing a novel category learning task.
Methods: Participants learned to classify pictures of European streets within a discovery learning
paradigm. In a double-blind design, 54 participants were randomly assigned to 30 min of tDCS using
either 2.0 mA anodal (n = 18), cathodal (n = 18), or 0.1 mA sham (n = 18) tDCS over the rVLPFC.
Results: A linear mixed-model revealed a significant effect of tDCS condition on classification accuracy
across training (p = 0.001). Compared to a 4.2% increase in sham participants, anodal tDCS over F10
increased performance by 20.6% (d = 1.71) and cathodal tDCS by 14.4% (d = 1.16).
Conclusions: These results provide further evidence for the capacity of tDCS applied to rVLPFC to enhance
learning, showing a greater than quadrupling of test performance after training (491% of sham) in a
difficult category learning task. Combined with our previous studies, these results suggest a generalized
performance enhancement. Other tasks requiring sustained attention, insight and/or category learning
may also benefit from this protocol.

© 2019 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

invasive brain stimulation. Safety and ease of use have made tDCS
a highly versatile and popular tool, but this has led in turn to var-

Since the recent re-emergence of transcranial direct current
stimulation (tDCS) [1], it has been applied in an effort to improve a
range of cognitive functions. Across these applications, tDCS has
been shown to be safe, with a minimal number of adverse effects
reported over thousands of participants [2,3]. Concomitantly, the
technology needed to implement a tDCS protocol is relatively
inexpensive and easy to operate compared to other forms of non-
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iable results across studies [4—9], as different experimental pro-
tocols interact with individual characteristics in ways that are not
fully understood [10—13]. Further work is needed to clearly define
the protocols and applications that maximize the potential of tDCS
[14].

Numerous meta-analyses have attempted to quantify the effect
of tDCS when applied to specific domains. Due to the many
experimental and subject moderators that exist across the tDCS
literature [15], the findings of these analyses vary, but small to
medium effect sizes have been demonstrated for anodal tDCS on
tasks requiring sustained attention [16], and learning [17,18]. These
two processes were likely critical to the performance improvement
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observed in a study that adapted stimuli from the DARWARS virtual
reality-based program designed to train soldiers prior to deploy-
ment to the Middle East [19], where participants receiving 30 min
of 2.0 mA anodal stimulation over the right ventrolateral prefrontal
cortex (rVLPFC) displayed an 87% percent increase in accuracy at
identifying and classifying images of concealed threat targets
compared to participants receiving sham (0.1 mA) stimulation. The
between groups difference in classification accuracy grew to 100%
after a 1 hour delay [20]. This intervention attained an effect size of
d = 1.2, larger than typically observed in tDCS interventions on
cognitive outcomes [21], and nearly twice that found in a recent
meta-analysis (d = 0.76) examining tDCS application during math
and language learning [18]. Importantly, two subsequent replica-
tion studies found results of a similar magnitude following stimu-
lation with the F10 protocol during this task [22—24].

Understanding the processes underpinning this improvement
might provide clues for other laboratory or real-world tasks that
would benefit from this tDCS protocol. However, the naturalistic
stimuli utilized in the original task [20] make parsing the relative
size of tDCS effects on different cognitive mechanisms difficult.
Participants were trained to classify images containing threats by
learning to identify threat cues within the images. Failure to
correctly categorize a threat image led to explicit short movies
showing the outcome of the unidentified threat (an explosion in a
vehicle or building, someone being shot, etc.). Accordingly, correct
categorizations led to videos with positive outcomes. Prior to the
task, subjects were not given any specifics about what constituted a
threat; rather, in a discovery learning paradigm, they were tasked
with engaging in trial and error learning over the course of training.

One explanation for the performance benefits seen in Ref. [20] is
an increase in attentional capacity. This is supported by behavioral
data, where participants receiving 2.0 mA anodal stimulation over
F10 demonstrated improved performance on the alerting subscale
of the Attention Networks Task (ANT) [25], improvement which
itself was positively associated with target detection performance
[23]. This coincides with other tDCS interventions that have found
similar beneficial effects of F10 stimulation on cognitive control
measures, including the stop-signal task [26—30]. Improvement in
sustained attention specifically may be a likely antecedent to per-
formance enhancement following F10 stimulation as improvement
in sustained attention has been observed following stimulation of
the right frontal cortex [31—33]. Sustained attention might be one
vehicle through which performance enhancement in the F10 pro-
tocol occurs, with consequent improvements in the ability to
generalize learned cues and classify new images [20,34], as well as
remember previously seen images [23], being mediated by pro-
longed attentional capacity during training.

A further factor that might contribute to the large effect seen
previously is specific to the threatening nature of the pre-
deployment training stimuli. Imaging research has linked
increased activity in the rVLPFC with the reduction and regulation
of the fear response [35,36], and decreased activity with rumina-
tion and stress-induced negative affect [37,38]. The reduction of
negative affect may thus provide another means by which F10
stimulation enhances attention, as there is evidence that positive
affect increases the scope of visual attention while anxiety de-
creases attentional control [39—41]. Affect-mediated attentional
changes are in turn linked to creative problem solving and insight
[41—43], factors that might play a crucial role in tasks based on
feedback and discovery learning [20,44,45]. Finally, and more
applicable to the abstract threats presented in our target detection
task [20], the rVLPFC is associated with the semantic representation
of stories containing violence [46]. Stimulation of this area might
predispose subjects to construct a violence-related narrative of the

presented stimulus, making threat-related cues and their conse-
quences more salient.

The aim of the current work was to further elucidate the
possible mechanisms through which performance enhancement in
the F10 protocol occurs, specifically through the creation of a novel
categorization task devoid of threatening stimuli but utilizing a
similar discovery learning paradigm. An additional difference was
the inclusion of a cathodal stimulation group, the goal of which was
to expand on a theoretical account of the neural networks affected
by F10 tDCS.

Twenty-first century tDCS research has largely been driven by a
stimulation-dependent model of tDCS effects, a de-facto theory
that arose from the seminal tDCS motor cortex studies which
reintroduced the possibility of noninvasively altering brain function
with small direct currents [1,47,48]. However, results have
outgrown the dichotomy of anodal excitation and cathodal inhib-
tion [21,49—52], and new theories are needed that provide more
nuanced predictions for the interaction between endogenous
neural activity and the subthreshold neuromodulation of tDCS.
Consistent with a view of cathodal stimulation as a filter of extra-
neous neural noise [53—56], it was hypothesized that the slope of
observed improvement in the cathodal stimulation group would be
smaller than that of the anodal group, with any improvement
occurring later in the training following initial increases in perfor-
mance specific neural activity.

Methods
Participants

Potential participants were recruited through the University of
New Mexico (UNM) research participation portal and posted ad-
vertisements. Participants attended a single experimental session
lasting approximately 2 h. Prior to enrollment, participants were
screened for the following inclusion criteria: right-handed, English
fluency, age 18—55, no history of seizures, no treatment for mood
disorders within 2 years, no metal implants or pacemakers, not
pregnant, no dependence on alcohol or recent illicit drug use, no
recent nicotine consumption, and not taking any other pharmaco-
logical agents known to affect nervous system function. At the
beginning of the experimental session, participants were informed
of the details and goals of the study, including the use of tDCS, and
consented. All study materials and procedures were approved by
the Advarra IRB and the U.S. Army Research Laboratory’s Human
Research Protection Program.

Experimental task

In a novel experimental task, participants learned to classify
pictures of European streets into two categories, labeled “L” and
“R”. Pictures were static street segment views accessed on Google
Maps Street View (http://maps.google.com). Each trial consisted of
one static street view presented for 2.5 s. Following a baseline, pre-
training block of 50 trials without feedback, there were four
training blocks, each with 60 trials in which participants received
accuracy feedback following each response. Accuracy feedback
consisted of a written message indicating a correct or incorrect
response accompanied by male voices with European accents
reciting a range of verbal responses. Training was followed by two
test blocks of 50 trials each, all without feedback (Fig. 1). The
baseline set was framed as a practice block during which partici-
pants were instructed to become accustomed to the timing of the
stimuli and to begin hypothesizing about criteria that might
differentiate them. Pictures could be correctly categorized through
two arbitrary rules. The first differentiated regions based on how
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Fig. 1. Study design.

the picture was taken in relation to the road. In region L, pictures
were taken on the left hand side of the road with traffic
approaching, while in region R, pictures were taken on the right
hand side of the road with traffic moving away (Rule 1). Traffic
pattern was always on the right. The second rule consisted of
symbols added to the pictures (i.e., hidden objects). Two side-by-
side dots (umlaut) were added to the pictures for region L, and a
curved line (tilde) was added to the pictures in region R (Rule 2).
Prior to beginning the study, participants were only told that there
were two regions but were not informed about the possible ways to
differentiate them. Instead, through discovery learning [45], they
gained knowledge of the pertinent criteria via accuracy feedback
during the training portion. In each block, Rule 1 was present in all
trials, while Rule 2 was present in half of trials. The two rules were
always consistent with each other. To ensure uniform difficulty
across the task, the saliency of specific criteria (road direction rule,
hidden object rule, apparent temperature, signs with written lan-
guage) in individual pictures was rated by two researchers, and
pictures were then evenly distributed across the different blocks
according to these ratings.

tDCS

TDCS was applied similarly to previously published studies
[20,22,24]. Participants were randomized to receive anodal, cath-
odal, or sham stimulation over F10, with the “return” electrode
placed on the left triceps. TDCS was administered by an ActivaDo-
sell lontophoresis unit. In a double-blind design, two of these units
were connected to a blinding box, with one unit set to deliver an
active dose of 2.0 mA (with a ramp-up of 30 s) and the other set to
deliver a sham dose of 0.1 mA. Participants were randomized to a
specific switch on the blinding box (1—6), with the experimenter
implementing the protocol unaware of the dosages associated with
each switch. Two saline-soaked Amrex A5 (5 x 5 cm) sponges
served as the electrodes, and these were attached to the arm with
adhesive Coban and to the head with an Amrex Velcro strap.
Stimulation lasted 30 min and began after the baseline block. At
0 and 4 min after the beginning of stimulation, participants
completed a sensation questionnaire asking them to rate the de-
gree of itching, heat, and tingling on a 0—10 Likert-type scale.
Participants were informed that sensations rated 7 or above would
end stimulation and the experiment. After the 2nd sensation
questionnaire, participants began the 1st training block, with
stimulation ending in the last minute of the 3rd training block.

Profile of Mood States

To explore possible interactions between self-reported affect,
tDCS, and performance improvements, participants completed the
Profile of Mood States (POMS) prior to stimulation and at the
conclusion of the experiment [57,58]. The POMS includes seven
unique subscales, Tension, Fatigue, Vigor, Confusion, Esteem-
Related Affect, Depression, and Anger.

Statistical analysis

All analyses were conducted in SPSS. Differences in average
sensations reported across tDCS conditions were analyzed with
analysis of variance (ANOVA). To test the effectiveness of partici-
pant blinding, we examined whether individuals correctly guessed
their assigned condition at the end of the experiment using a cross-
tabulation and x? test. In addition, Bonferroni-corrected paired t-
tests were conducted to compare scores on the POMS subscales at
the beginning and end of the experiment. One-way ANOVAs were
conducted to identify any between-group differences on the POMS
subscales at the conclusion of the experiment.

We used linear mixed-effects models to test differences be-
tween tDCS conditions on accuracy and reaction time across the
experimental blocks. These two separate models were estimated
using maximum likelihood. Both models had fixed and random-
effects of intercept, condition (anodal, cathodal, or sham tDCS),
and block (baseline, 4 training, and 2 test blocks), and used an
autoregressive variance-covariance structure to account for
decreasing correlations over non-consecutive blocks. Responses
occurring later than 2500 ms after stimulus onset were not
included in calculation of accuracy or response time. To explicate
changes in categorization accuracy and response time between
stimulation groups during (online) and after (offline) stimulation, 2
difference scores were calculated, one representing online change
(baseline to training block 3) and one representing offline change
(training block 4 to test block 2). A linear regression was then
performed for each of these difference scores, with stimulation
condition as the independent variable. One-way ANOVAs were also
conducted to identify any between-group differences in accuracy
and reaction time in each of the 2 test blocks.

Results
Participants

Six participants were excluded from the final analysis. Two were
excluded due to technical issues with the computer program during
data collection. An additional three participants, one in each
experimental group, were excluded for insufficient task engage-
ment. Insufficient task engagement was defined by two criteria:
average response time during the training blocks was less than 1 s,
and pattern of response was consistent 1’s or 2’s or alternating 1, 2,
1, 2 .... No participants reported sensation ratings of 7 or above,
however one subject receiving cathodal stimulation reported a
metallic taste and chose to leave the study during the first minutes
of stimulation. The final analysis included 54 participants, 18 in
each group (Table 1). A one-way ANOVA found no significant dif-
ferences between groups in sex or age.

Participant blinding & POMS
One-way ANOVAs indicated significant differences for reported

sensations between groups. Participants in the anodal (M = 3.07,
SD = 1.87) and cathodal groups (M = 2.50, SD = 2.22) reported
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Table 1
Subject demographics.
Age Male Female

Condition N Mean SD Range N % N %
Anodal 18 22.85 7.59 30 9 50% 9 50%
Cathodal 18 24.59 11.35 38 9 50% 9 50%
Sham 18 22.16 5.19 17 5 28% 13 72%
Total 54 23.20 8.34 38 23 43% 31 57%

greater tingling than those in the sham group (M = 0.67, SD = 0.72),
(F(2, 43) = 7.821, p = 0.001). Additionally, participants receiving
anodal stimulation (M = 2.47, SD = 1.92) reported significantly
greater itching than participants receiving sham stimulation
(M = 0.87, SD = 1.19), (F(2, 43) = 3.353, p = 0.044). Despite these
differences, a chi-square test of independence did not indicate a
significant association between assigned condition (verum or
sham) and condition guessed by participants after the experiment
(x> (1) = 0.35, p = 0.554). Results from the Bonferroni-corrected
paired t-tests for the POMS subscales found that participants re-
ported significantly more confusion and fatigue, and significantly
less vigor and esteem-related affect after the experiment (Table 2).
One-way ANOVAs were conducted to describe differences in the
POMS subscales attributable to stimulation group membership,
none of which approached significance (all p’s > 0.05).

Categorization accuracy and reaction time

One-way ANOVAs confirmed that there were no significant
differences between groups on number of no-response trials in any
of the blocks (all p > 0.12). The mixed-model examining accuracy
indicated a significant fixed-effect of experimental block (F(6,
36.77) = 10.12 p < 0.001) and condition, (F(2, 47.65) = 7.99,
p = 0.001), but not the interaction between condition and block
(F(12, 36.77) = 1.46, p = 0.184) (Fig. 2). For the online change in
categorization, anodal group membership significantly predicted
improvement (§ = 0.427, p = 0.006), while cathodal group mem-
bership did not (8 = 0.070, p = 0.641). Contrastingly, cathodal
stimulation significantly predicted offline improvement (8 = 0.314,
p = 0.049), while anodal stimulation did not (8 = 0.169, p = 0.284).
Post-hoc tests indicated that there were significant mean differ-
ences between anodal (M = 71.8%, SD = 16.9%) and sham
(M = 55.1%, SD = 12.6%) stimulation in test block 1 (p = 0.002) and
2 (anodal: M = 70.5%, SD = 15.3%; sham: M = 54.4%, SD = 10.8%;
p < 0.001), and between cathodal and sham groups in test block 1
(cathodal: M = 70.5%, SD = 15.3%; p = 0.025) and 2 (cathodal:
M = 65.2%, SD = 11.8%; p = 0.007). However, there were no sig-
nificant differences between anodal and cathodal groups in test
block 1 (p = 0.15) or 2 (p = 0.25). From baseline to test (test block
average), anodal tDCS increased average categorization accuracy by
20.6% (SD = 16.1%), cathodal tDCS by 14.4% (SD = 11.8%) and sham
by 4.2% (SD = 11.7%). The improvement in performance equated to
an effect size of d = 1.71, 95% CI [0.95, 2.47] in the anodal group and
d = 1.16, 95% CI [0.45, 1.86] in the cathodal group [59].

Table 2
POMS results.
Pre Post

Subscale M (SD) M (SD) t p
Confusion 1.75 (2.18) 3.59 (2.91) —4.782 <0.001
Fatigue 2.88 (2.94) 3.80 (2.86) —3.084 0.003
Esteem Related Affect 15.33 (3.06) 12.55 (3.87) 5.504 <0.001
Vigor 7.25 (4.22) 4.84 (4.46) 6.087 <0.001

For the mixed-effects models of reaction time, there was sig-
nificant fixed-effect of experimental block (F(6, 894.95) = 11.75,
p < 0.001), while the fixed-effect of condition approached but did
not reach significance, (F(2, 963.67) = 2.94 p = 0.053). The inter-
action between condition and experimental block also did not
reach significance (F(12, 894.68) = 2.94, p = 0.293). Both anodal
(8 = 0374, p = 0.017) and cathodal group (8 = 0.330, p = 0.034)
membership predicted increases in online reaction times, but
stimulation group membership did not predict changes in offline
reaction time. Similarly, none of the post-hoc tests for reaction time
differences between groups approached significance for test block
1 or 2 (all p’s > 0.10). Reaction time changes across the task are
shown in Fig. 3.

Discussion

When compared with sham stimulation, anodal tDCS improved
categorization accuracy by 20.6% (vs. 4.2% in sham), while cathodal
tDCS improved categorization accuracy by 14.4%. Described another
way, anodal tDCS at F10 (over rVLPFC) led to a 391% improvement
in performance relative to sham, and cathodal tDCS led to a 243%
improvement relative to sham. Both the magnitude of performance
improvement and corresponding effect size described here were
larger than in the previous threat-learning paradigm [20], indi-
cating that the benefits derived from the F10 tDCS protocol are not
specific to learning to identify and classify threats, but rather to
more generalizable tDCS-mediated improvements in classification
learning, sustained attention and/or insight.

Explicating the similarities between this and previous studies
that have demonstrated promising behavioral effects from F10 tDCS
is crucial for understanding its cognitive effects, and for defining
other applications that might benefit from this protocol. Beyond
neuronal changes in neurotransmission and metabolism previously
noted [60], both tasks capitalized on two factors that have been
shown to moderate the effects of tDCS: experimental differences in
the timing of stimulation during exposure to a task, and individual
differences in neural activity related to task performance. Both of
these moderators can be accounted for within the same theoretical
framework, one which views the current flowing from the anode as
increasing neuronal noise, and the current returning to the cathode
as reducing neuronal noise. Depending upon the strength of
endogenous signal, the addition or filtering of neuronal noise can
be facilitative or detrimental to performance [56,61]. In timing ef-
fects, the addition of neuromodulatory noise near first exposure to
a task allows anodal stimulation to have the greatest potential
impact, as it interacts with yet unorganized task related neural
activity. In this way, online anodal tDCS is able to maximize tDCS-
mediated plasticity changes [18,60,62,63] within task-specific
networks [64—68]. This has been demonstrated elsewhere
[69,70], and in our original target detection task, where anodal
stimulation applied during the first hour of training led to signifi-
cantly better classification accuracy than anodal stimulation
applied during the second hour of training [71].

Similarly, an individual’s level of proficiency or familiarity on the
task performed during tDCS has also been shown to moderate the
effectiveness of tDCS, with initially lower performers or novices
often benefiting more from anodal stimulation than initially higher
performers or experts [72—75]. The design of the current study
could be maximizing the effect of tDCS by utilizing a paradigm,
discovery learning [45], that explicitly introduces an undefined
problem space. This too might allow the neuromodulatory effect of
the tDCS to have the greatest positive impact by adding noise to a
relatively disorganized neural signal. The location of stimulation is
critical in this regard, with fMRI work explicitly associating the
rVLPFC activity with the initial ability to correctly identify targets
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Fig. 2. Between-groups differences in accuracy across experimental blocks. Error bars = +1 SE.

[20]. This accords with other imaging work, which has connected
the generation of hypotheses and insights with the rVLPFC [76—82].
In the current study, online anodal stimulation introduced exoge-
nous noise and accelerated the formation of task related neural
networks in the rVLPFC, leading to an increase in categorization
accuracy up until the end of training block 3. In comparison, online
cathodal stimulation suppressed the functioning of these nascent,
task-related networks, by initially filtering both noise and signal
alike. The removal of this filter at training block 4 might have led to
an immediate increase in relevant excitability in the cathodal
subjects, perhaps through a homeostatic mechanism that had
adjusted the functional range of neural activity during stimulation
[83,84].

The results from this study also support the hypothesis that the
F10 tDCS montage promotes sustained attention. This is consistent
with fMRI studies, which have found the rVLPFC to be involved in

the maintenance of attention and cognitive control [85—89].
Average performance in the sham group peaked during the 3rd
training block, while performance significantly increased in the
anodal group during stimulation, and in the cathodal group
following stimulation. This suggests that verum subjects were
better able to maintain engagement with this task, both during and
after stimulation. Similarly, increases in fatigue and decreases in
vigor were seen across groups following the task, but for those in
the anodal and cathodal groups this decrease in self-reported en-
ergy was not detrimental to task performance in the test blocks.
The lack of improvement in the sham group is notable, with 9 of
the 18 sham subjects displaying average categorization accuracy in
the test blocks of <50% (compared to 2 in anodal and 0 in cathodal).
In a debriefing questionnaire following the study, sham subjects
reported using people and written signs within the pictures as
categorization criteria significantly more than those receiving
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Fig. 3. Between-groups differences in response time across experimental blocks. Error bars = +1 SE.
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verum stimulation. It is possible that the failure of these and similar
candidate objects within the pictures themselves represented an
exhaustion of the set size subjects brought to the pictures [90,91],
where set size can be thought of as a framework for thinking about a
problem. Contrastingly, subjects receiving verum stimulation were
able to go beyond this original set size, either driven by augmented
sustained attention, allowing them to continue looking following
the exhaustion of an initial set, or by enhanced insight, allowing
them to more quickly see beyond the confines of the initial set.

Several limitations within the design of the current study should
be considered. Beyond the use of new stimuli and categorization
criteria, there were three other differences between the task used
in the current study and our original target detection task [20].
First, stimulus presentation time was increased from 2.0 to 2.5 s.
Second, half as many baseline trials were presented in the current
study, as no participants were significantly above chance at base-
line when piloting the stimuli, likely related to the arbitrary cues
used here. Finally, the visual feedback was different. In Ref. [20], a
computer animated video showed the consequences of a subject’s
classification choice, while in the current study, the visual feedback
was a non-specific “Correct” or “Incorrect.” Given the larger effect
found here compared to these prior studies, it is unlikely that any of
these differences weakened the magnitude of tDCS effects. While
verum vs. sham stimulation was double-blinded, an additional
limitation here was a lack of double-blinding between the cathodal
and anodal conditions. Finally, while stimulation of the rVLPFC
might have directly impacted cortical networks involved in atten-
tion and insight, the extracephalic electrode placement might have
led to far field effects in other brain areas. Indeed, unpublished
finite element modeling done on this protocol demonstrated that
large field effects occur in the basal ganglia, amygdala, brain stem,
and especially in the cerebellum [92]. While no significant
improvement in target detection was found following cerebellar
anodal stimulation with the return on the left arm, it is still possible
that remote effects contribute to performance improvements
resulting from F10 stimulation.

Conclusion

Our prior work examining the impact of rVLPFC tDCS on threat-
target categorization and detection [20], coupled with recent fMRI
studies implicating the rVLPFC in processing violence-related se-
mantic stimuli, suggested that tDCS of the rVLPFC may have been
effective due to the threat-related content. This was not supported
by findings in the current study, wherein learning to categorize
stimuli without violent imagery benefited to a relatively larger
degree from this tDCS protocol. This in turn suggests that the F10
tDCS protocol provides a general benefit to category learning, and is
not related to threat detection.

The behavioral differences between tDCS groups observed here,
with participants receiving sham tDCS tending to “give up” sooner
than those receiving either anodal or cathodal tDCS, implies that this
protocol may be associated with greater perseverance, an attribute
that is associated with greater learning and performance [93]. Future
work should specifically test the effects of this protocol on perse-
verance during tedious tasks, and perceptual and declarative
learning within a discovery learning paradigm. If this protocol pro-
vides resilience during tedious and difficult tasks, or helps hypothesis
generation and insight in the face of an undefined problem space, it
may ultimately prove beneficial for a variety of real-world tasks.
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