Differences in left fusiform gyrus morphometry in adults with dyslexia: Voxel- and surface-based analyses

BOSTON UNIVERSITY

CNS2#20

Gabrielle-Ann Torre¹, Ja Young Choi², Terri Scott¹, Yaminah Carter¹, Tyler Perrachione¹

¹Dept. of Speech, Language, and Hearing Sciences, Boston University, ²Program in Speech and Hearing Science and Biotechnology, Harvard University

Introduction

Dyslexia is a neurological disorder that impairs reading skills. Structural neuroimaging has not converged on reliable neuroanatomical signatures of reading impairment.

Research Questions

- Are there whole-brain group differences in N=107 adults with and without dyslexia for gray matter density, cortical thickness, and surface area?
- Do these morphometry measures correlate with reading ability in dyslexia?

Methods

Participants

<u>Dyslexia group:</u> Native English adults with prior dyslexia diagnosis or history of reading difficulties; n=55

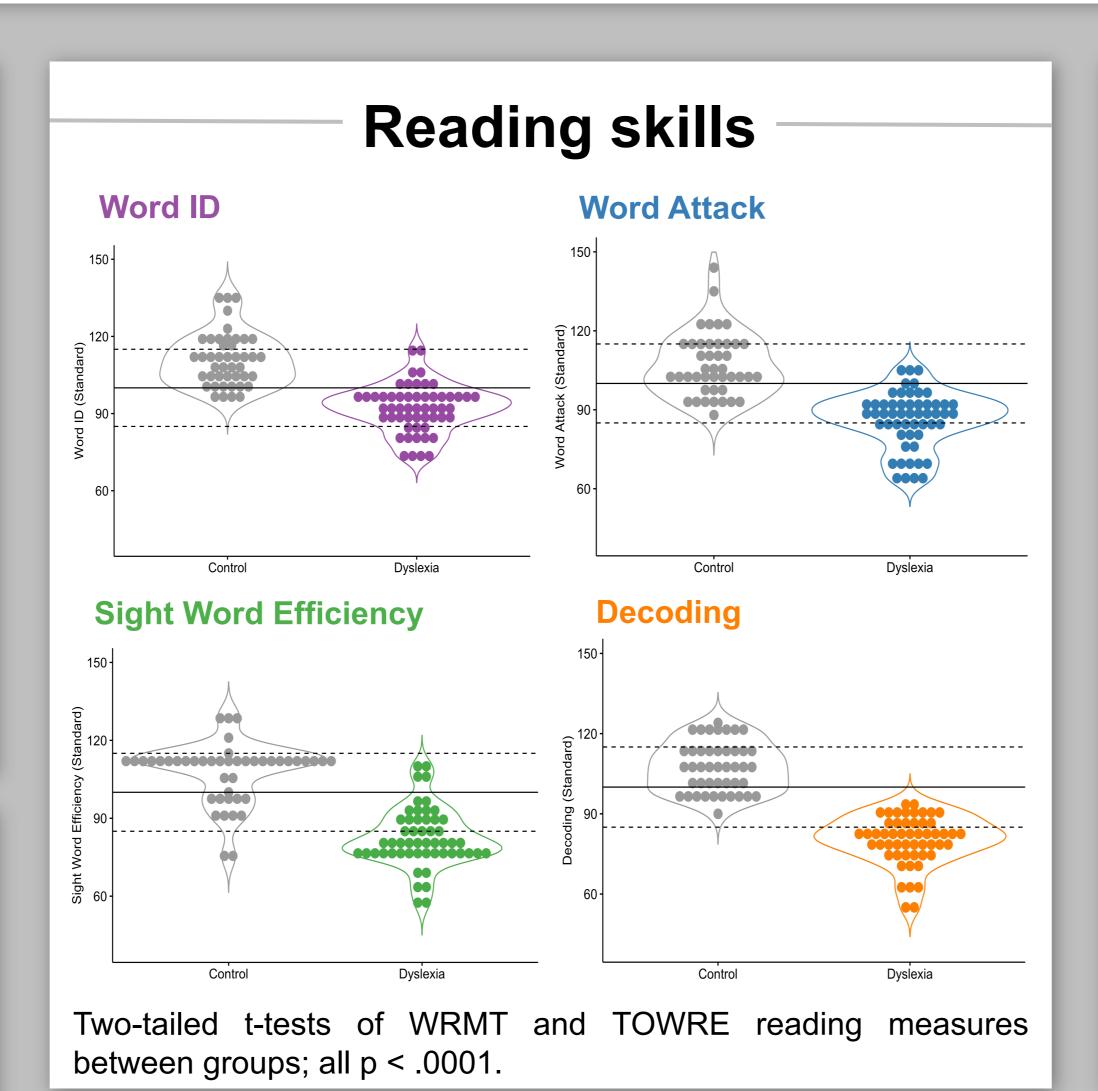
<u>Control group:</u> Native English adults with history free

from reading difficulty; n=52

monificating unificulty, n=32			
		Control	Dyslexia
Test	Subtest	Standard Score	Standard Score
WRMT	Word ID	111.0	92.11
	Word Attack	108.1	86.30
TOWRE	Sight Word Reading	108.2	82.53
	Decoding	107.4	80.21
Non-verbal IQ		116.68	110.80
Age (years)		22.66	23.19
Sex (M/F)		47:52	21:78

Neuroimaging Data Acquisition

Siemens Trio 3T; 32ch coil; T1 ME-MPRAGE, 1mm³


Structural Neuroimaging Analyses

Preprocessing:

- Gray matter density: SPM12 using VBM pipeline.
- Cortical thickness and surface area: Freesurfer v6.0.0. Manual editing determined by Qoala-T.

Modeling:

- Gray matter density: GLM with nuisance (sex, age) factors.
- Cortical thickness and surface area: GLM with fixed (group, sex) and nuisance (age) factors.

Group Differences Uncorrected differences (p<.05) in left precentral gyrus, left fusiform, right SMG, bilateral IFG, and bilateral parietal lobe. Group differences in left fusiform gyrus; corrected (Monte-Carlo null-z simulation, p < . 0005). Z-score 3.090 Left fusiform gyrus; corrected (Monte-Carlo null-z simulation, p < . 0005). Correlations with Reading Skills No significant correlations with reading in dyslexia when corrected. Uncorrected correlations (p<.05) between cortical thickness and reading skills in dyslexia Word ID Word Attack Sight Word Efficiency Decoding R-val R-val

Gray matter density Group Differences No significant group differences when corrected. Uncorrected differences (p<.05) in bilateral IFG, temporal lobe and (not shown) bilateral cerebellum. Correlations with Reading Skills No significant correlations with reading in dyslexia when corrected. Uncorrected correlations (p<.05) between GMD and reading measures. Word ID Word Attack R-val 7 Sight Word Efficiency Pecoding R-val 7 R-val

Cortical surface area Group Differences No significant group differences when corrected. Uncorrected group differences (p<.05) in left SPL, left SMG, right IPL, and LOC. Correlations with Reading Skills No significant correlations with reading in dyslexia when corrected. Uncorrected correlations (p<.05) between GMD and reading measures. Word ID Word Attack R-val 7 Sight Word Efficiency Pecoding R-val 7 Decoding R-val 7 2 Decoding

References

[1] Altarelli et al., (2014). Human Brain Mapping, 35(12): 5717-35. [2] Eckert et al., (2016). eNeuro,3(1): ENEURO.0103-15.2015. [3] Ramus et al., (2018). Neuroscience and Biobehavioral Reviews, 84, 434-452. [4] Jednorog et al., (2015). Human Brain Mapping, 36(5): 1741-54. This work was supported by NIH R03HD096098 to TKP. GT was supported under NIH training grant T32DC013017.

Discussion

- Prior reports of morphemetry differences in dyslexia may not generalize to larger samples or disorder heterogeneity.
- This may especially be the case for regions outside of left fusiform gyrus, which may mature differently during reading development in dyslexia.
- It is unclear whether morphometry differences in left fusiform gyrus are a cause or consequence of dyslexia.
- This is a preliminary report from a sample of more than 1000 brains of adults and children with and without dyslexia.

gat@bu.edu http://sites.bu.edu/cnrlab/