Motivation

- Hemispheric specialization (HS) is the relationship eetween a cognitive, sensory, or motor function and
,
Language lateralization and hand preference ar
particular cases of $\mathrm{HS}[1,2]$. ,
(RH) having their tanguageall population is inght handed
left hemisphere. left hemisphere.
Around 20% of left handers (LH) present ambilateral or
strongly-atypical language lateralization in the right strongly-atypical
hemisphere $[3]$.
Multiple studies of HS do not consider the linguistic
competences of the particiciants, in competences of the participants, in particular, whethe
subjects speak one language (i.e. subjects speak one language (i.e. monolingual) or
several languages (i.e. bilingual or multilingual). A meta-
analysis $[4]$ found that early bilinguals showed bilateral several anguages (..e. biingual or mutringuaal). A meta-
analysis $[4]$ found that early bilinguals showed bilateral
hemisphere hemisphere involvement for both languages, while
monolinguals and late bilinguals, showed left hemisphere dominance.
Nevertheless, litte is yet known about how handedness
affects brain lateralization in bilinguals.

CKowLEDMENT

Language lateralization in early bilinguals

\square Right

SPN

Regression analysis show that some participants have different LI scores depending on the language. This lesulistic competences of each indivividual. A higher correlation value was found between the LI index of
Spanish and Bascue in LH in comparison to RH (see Fig. 4 - left).
(5) Significant differences were found in the LI scores of
RH versus LH bilinguals in Spanish ($p=0.003$) and in Basque ($p=0.024$) (see Fig. 4 - right).
(c) No significant differences were found among languages
in LH ($p=0.654$) and $\mathrm{RH}(\rho=0.261)$ (see Fig. 4 - right).

Brain activation pattern of language production versus recitation is shown in Fig. 2. Most active areas are related with language, such as Broca and gyrus.
No significant differences were found among languages neither among left and language production versus recitation at the group level.
(3)The distribution of LI scores shows more negative values in LH in comparison to RH, according to previous findings [3]. Early bilinguals show more
ambilateral activation in comparison to monolinguals (see Fig. 3).

Laterality index (LI) for RIGHT handed bilinguals

igure 3. Distribution of Liscores in lef and Ight handed bilinguals and for each language Istogramm wint ine distritution

Methods

- fMRI data was preprocessed in AFNI as follows: (i) slice time correction; (ii) head motion realignment; (iii) normalization to MNI template; (iv) extraction of tissue-based masks (based on Freesurfie)

The statistical parametric map of sentence generation versus recitation contrast was computed in AFNI.

- The hemispheric functional laterality index (LI) applied to the sentence generation versus recitation individual t-map was computed in SPM using the LI toolbox [7]. It is computed as follows:

$$
L I=\frac{\sum_{\text {activation }_{\text {left }}}^{\text {mwf }}-\text { activation }_{\text {right }}}{\sum \frac{\text { activation }_{\text {left }}}{m w f}+\sum \text { activation }_{\text {right }}}
$$

$n w f=$ mask weighting factor
LI was computed with a bootstrap algorithm using the positive t-map, a lower bootstrap sample of 5 voxels and higher sample size of 1,000 voxels, and a resample ratio of $k=0.25$. Values ranging between -100
and +100 , with -100 being a purely right and +100 a purely left activation.

- LI was computed for each participant and language (LI-SPN and LI
- Statistical inference was performed at (i) the group level to evaluate differences in the brain activation maps of the $L H$ versus $R H$ bilinguals
(two sample t-test) and among languages (paired t-test): and (ii) the (two sample t-test) and among languages (paired t-test); and (ii) the
individual level to study the differences in Ll scores of LH versus RH bilinguals

Take-home message

Early biliguals show more bilateral brain activation than monolinguals in language related areas during covert speech production.
Necessity of performing analyses at the level of individual subjects to investigate HS of language.
Our study highlitghs the importance of considering linguistic profiles in
determining HS in single subjects.

