Motivation

- Hemispheric specialization (HS) is the relationship between a cognitive, sensory, or motor function and
Liz
Language lateralization and hand preference are
particular cases of $\mathrm{HS}[1,2]$. More than 90% of the ove More than 90% of the overall population is right handed
(RH) having their language function co-lateralized in the
left hemisphere. Around 20% of left handers (LLH) present ambilateral or strongly-atypical
hemisphere $[3]$.
- Multiple studies of HS do not consider the linguistic competences of the participants, in particular, whether
subjects speak one language (i.e. monolingual) or subjects speak one language (i.e. monoingual)
several languages (i.e. bilingual or multilingual) $[4]$.
Little is yet known about how handedness affects brain
lateralization in bilinguals.

Experiment

111 early (age of acquisition < 6 years) highly-proficient
Spanish-Basque bilinguals (mean age 26.19 ± 6.15 Spanish-Basque
years; 59 Female)

- MRI acquisition in $3 T$ Siemens Prismafit MR scanner: -2 fMRI runs (GRE-EPI sequence, TR/TE=850/35 ms ,

 scans) while doing a speech produ.
Basque (BSQ) and Spanish (SPN) [3].
- Subjects were presented during 1 sec white line drawing pictures on a black screen, which were either scrambled pieces randomly distributed or a cartoon depicting a
scene. Atterwards, the subject had to covertly generate
either the list of months of the year or a sentence either the list of months of the year or a sentence
describing the cartoon. More detailed information about

 Figure 1. Illustration of the fMRI paradigm used for assessing
language hemispheric lateralization. WiEgGMENTS nguage hemispheric lateralization.

Language lateralization in early bilinguals

Figure 2. Brain activation pattern of language production versus recitation. Brain activation pattern is shown for left ($($ LH) and right handed (RH) bilinguals in both languages,
Spanish (SPN) and Basque (BSQ). A paired t test was performed to study the dififerences

Brain activation pattern of language production versus recitation is shown in
Figure 2. Most active areas are part of the language processing network, such Figure 2. Most active areas are part of the language processing network, such
as inferior frontal gyrus ('Broca') and posterior temporal gyrus ('Wernicke'), precuneus, middle and superior temporal gyrus and frontal gyrus. No significant differences were found after multiple comparison correction
among languages, neither among left and right handed bilinguals when
comparing language production versus recitation at the group level. comparing language production versus recitation at the group level.
(3) The distribution of LII scores shows more negative values in LH in comparison
to RH, following previous findings [3]. Early bilinguals show more ambilateral to RH, following prevevious findings [3]. Early bilinguals show more ambilateral
activation in comparison to monolinguals (see Figure 3).

Figure 3 . Distribution of LI scores in left and right handed bilinguals and for each language. Silstograms s vith the distrtibution of the LIIs coresec compunted drom tre individual
t-maps of sentence generation versus recitation contrast. A negative (positive) LI score t-maps of sentence generation versus recitition contrast. A negative (positive) LIscore means higher activation in the rigigu
brain activation during the task.

(4) Regression analysis show that some participants have different LI scores depending on the language. This esult suggest that we have to carefully consider the
linguistic competences of each individual. A . higher
. correlation value was found between the LI index of
Spanish and Basque in LH in comparison to RH (see Spanish and Ba
Figure 4 - left).
(5) Significant differences were found in the LI scores of RH versus LH bilinguals in Spanish ($p=0.003$) and in Basque ($\rho=0.024$) (see Figure 4 - right).
(6) No significant differences were found among languages
in $L H(p=0.654)$ and $\mathrm{RH}(p=0.261)$ (see Figure 4 right).
Figure 4. Statistical analysis of LI scores. LEFT: Linear regression analysisicol of Lin Basysis of and SI Scores. LEFT: Linear
their corresponding correlation values. RIGHT: Box pond phots of the their corresponding correlation values. RIGHT: Box plotos of the
comparison between RH and LH for each tanguage. Significant
differences were found between RH vs LH bilinguals for each difterences were found between RH vs
particular language, but not among languages.

Methods

fMRI data was preprocessed in AFNI as follows: (i) slice time
correction; (ii) head motion realignment; (iii) normalization to MNI emplate; and (iv) exraction of principal components from tissue-based

- The statistical parametric map of sentence generation versus recitation (3dREMLfit) including sk-related and nuisance regressors.
- The hemispheric functional laterality index (LI) applied to the sentence generation versus recit
using the LI toolbox [7]:

$$
L I=\frac{\sum \frac{\text { activation }_{\text {left }}}{m w f}-\sum \text { activation }_{\text {right }}}{\sum \frac{\text { activation }_{\text {left }}}{m w \text { activation }_{\text {right }}}}
$$

lower bootstrap sample of 5 voxels and higher sample size of 1 , a lower bootstrap sample of 5 voxels and higher sample size of 1,000 voxels, and a resample ratio of $\mathrm{k}=0.25$. Values ranging between -100
and +100 , with -100 being a purely right and +100 a purely left activation.

- LI is computed for each participant and language (LI-SPN and LI-BSO).

Statistical inference was performed at (i) the group level to evaluate differences in the activation maps of the LH versus RH bilinguals (two sample t -test) and among languages (paired t -test); and (ii) the
individual level to study the differences in LI scores of LH versus RH bilinguals.

Take-home message
 - Early biliguals show more bilateral brain activation than monolinguals in language-related areas during covert speech - Our results call for the need to perform analys
 - Our study highlitghs the importance of considering linguistic profiles in determining HS in single subjects.

