

Early Exposure to Reading Relates to Leftward Structural Asymmetries Critical for **Literacy Development in Pre-readers**

Lindsay J Hillyer¹, Xi Yu^{1,2,3}, Angeliki Mougiou¹, Eline Laurent¹, Jade Dunstan¹, Emma Boyd⁴, Lilla Zöllei⁴, Nadine Gaab^{1,2}

¹Laboratories of Cognitive Neuroscience, Boston, MA; ³Beijing, China; ⁴Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA; ³Beijing Normal University, Beijing Normal University, Beijing, China; ⁴Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA; ³Beijing Normal University, Beijing Normal University, Beijing Normal University, Beijing Normal University, Beijing, China; ⁴Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA; ⁴Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA; ⁴Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA; ⁴Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA; ⁴Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA; ⁴Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA; ⁴Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA; ⁴Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA; ⁴Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA; ⁴Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA; ⁴Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA; ⁴Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA; ⁴Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA; ⁴Athinoula A. Martinos Center for Biomedical Imaging, Boston, MA; ⁴Athinoula A. Martinos Center for Biomedical Imaging, Boston, MA; ⁴Athinoula A. Martinos Center for Biomedical Imaging, Boston, MA; ⁴Athinoula A. Martinos Center for Biomedical Imaging, Boston, MA;

Introduction

- Home literacy experiences, such as shared reading, are important for children's language and reading development, especially before the start of schooling¹⁻⁴.
- Reading ability is supported by a primarily left-lateralized neural network⁵. Leftlateralization of regions important for language and reading development have been associated with behavioral measures of verbal and literacy skills^{6,7}.
- Positive associations have been observed between home literacy exposure (HLE) and left-hemispheric white matter microstructure and functional activation relevant for language ability^{2,8}.
- It remains unknown whether and how HLE is associated with hemispheric specialization in gray matter characteristics in regions important for language and reading development.

Methods

Participants: 112 pre-kindergarteners (55 females, age = 66.8 ± 5.7 months).

- **HLE:** characterized through parental survey using the following three questions
 - Age of child when first read to:
 - 1. Prenatal; 2. 0-3 months; 3. 3.1-6 months; 4. 6.1-9 months; 5. 9.1 or more months
 - Total number of children's books in the home: 1. 0-10; 2. 11-50; 3. 51-100; 4. 101-200; 5. 201-300; 6. 301+
 - Amount of time at home that someone reads to the child each week: 1. <1 hour; 2. 1 hour; 3. 2 hours; 4. 3 hours; 5. 4-5 hours; 6. 6+ hours

Processing of Structural MRI Data:

- Manual editing of FreeSurfer⁹ surface segmentation as needed.
- Cortical thickness, volume, and surface area extracted for 11 regions in both hemispheres (Fig. 1).
- Left-lateralization index (LI) computed for each region:

Left-hemispheric measure – Right-Hemispheric measure LI =Left-hemispheric measure + Right-Hemispheric measure

Statistical Analyses: Correlation analyses between each HLE measure and LI of cortical regions performed. Results were corrected for multiple comparisons (n=33).

Figure 1. Sagittal (A) and ventral (B) view of languagerelevant regions included in the current analyses.

 The significant association between onset of shared reading gyrus represents a structural correlate in gray matter charact previously observed positive association between HLE and o and reading development.

Though most parents began reading to their children in infan differences in month of onset were significantly associated with LI of Heschl's.

- Parstriangularis
- Parsopercularis
- Transversetemporal
 - Superiortemporal
- Middletemporal

Fusiform

Figure 2. Significantly negative correlation between LI of transversetemporal volume and onset of shared reading (outlined in yellow in Figure 1).

Discussion

 The left Heschl's gyrus (primary auditory processing ar implicated in speech perception in infants¹⁰ and childre have shown atypical rightward asymmetry of Heschl's controls¹¹.

 Speech perception plays a critical role in the developm language and preliteracy skills (e.g. phonological proce critical foundations of reading development^{12,13}.

 Shared reading onset negatively correlated with LI of transverse temporal (Heschl's) gyri for volume $(r = -0.39, p_{\text{uncorrected}} < 0.001, p_{\text{corrected}} = 0.003).$

• No other significant correlations observed.

	References
and LI of Heschl's teristics for the children's language	 Debaryshe (1993) J. of Child Language Powers (2016) Annals of Dyslexia Payne (1994) Early Childhood Research Levy (2006) J. of Experimental Child
rea) has been en with dyslexia when compared to	 Psychology 5. Vigneau (2005) Neuroimage 6. Qi (2019) Developmental Cognitive Neuroscience 7. Shaywitz (2002) Society of Biological Psychiatry 8. Hutton (2019) Acta Paediatrica
ent of oral essing) which are	9. Fischl B. (2012) <i>Neuroimage</i> 10.Dehaene-Lambertz (2003) <i>Science</i> 11. Altarelli (2014) <i>Human</i> <i>Brain Mapping</i> 12 Burpham (2003) Reading
ncy (Fig. 2), small	and Writing 13.Kuhl (2005) Language

Contact: Lindsay.Hillyer@childrens.harvard.edu

Learning and Development