

LOUISIANA STATE UNIVERSITY

Introduction

Problem:

- Society is increasingly reliant on automation
- Monitoring such systems is essential but tedious
- Vigilance decrement in human operators creates significant safety risks¹

Proposed Solution:

- Transcranial direct current stimulation (tDCS) is safe, portable, and relatively inexpensive
- Previous work suggests anodal tDCS applied to left dorsolateral prefrontal cortex (dlPFC) can improve task vigilance^{2,3}

Methods

Design

- 21 healthy young adults completed 2 sessions
- Active or sham tDCS; order counterbalanced
- 7 or 14 days between sessions, same time/day

Task

- Computerized version of Mackworth clock test⁴
- $\sim 8\%$ of 3600 trials required response
- Evenly distributed across three 10-minute blocks

Stimulation

- Neuroconn DC-Stimulator Plus
- 5 x 7 cm sponge-covered rubber electrodes
- Anode: F3 (left dlPFC)
- Cathode: Fp2 (contralateral forehead)
- 2 mA x first 20 minutes of task

Statistics

• Linear mixed effects model (subjects = random)

Effects of Transcranial Direct Current Stimulation (tDCS) on Operator Vigilance: A Double-Blind, Sham-Controlled Study

E. Susan Duncan¹, Surani G. Nakkawita¹, Heather Lucas¹, Owen T. Carmichael², Marcio de Queiroz¹ 1. Louisiana State University

2. Pennington Biomedical Research Center

- Some effects likely obscured by:
- - factors affecting attention

1. Mosier, K. L. & Skitka, L. J. (1996). Human de
Mouloua (Eds.), Automation and human perfor
2. Nelson, J. T., McKinley, R. A., Golob, E. J., Wa
direct current stimulation (tDCS). Neuroimage,
3. McIntire, L. K., McKinley, R. A., Goodyear, C.
on vigilance and cognitive performance during
4. Mackworth, N. H. (1948). The breakdown of vi
5. Huang, Y., Datta, A., Bikson, M., & Parra, L. C
automated open-source pipeline. Journal of neu
A
This work was supported by a Manship Summer R

Findings suggest future promise for enhanced operator vigilance

• Interaction between attention and task familiarity

• Individual variability in tDCS response

• Modulating stimulation via real-time feedback may yield more consistent, optimal vigilance performance

• Neural vigilance marker: Sensitive to endogenous/exogenous

• Dynamic stimulation parameters: Online adaptation of intensity/waveform based on individualized traits and states

References

cision makers and automated decision aids: made for each other? In R. E. Parasuraman & M. E mance: Theory and applications (pp.201-220). Hillsdale, NJ: Lawrence Erlbaum Associates, Inc. arm, J. S., & Parasuraman, R. (2014). Enhancing vigilance in operators with prefrontal cortex transcranial 85,909-917.

, & Nelson, J. (2014). A comparison of the effects of transcranial direct current stimulation and caffeine extended wakefulness. Brain stimulation, 7(4), 499-507.

gilance during prolonged visual search. Quarterly journal of experimental psychology, 1(1), 6-21. . (2019). Realistic volumetric-approach to simulate transcranial electric stimulation—ROAST—a fully *ural engineering*, 16(5), 056006

cknowledgments

Research Fellowship from the LSU College of Humanities & Social Sciences (PI Duncan) and by a grant from the Louisiana Board of Regents Research Competitiveness Subprogram (#LEQSF-(2017-20)-RD-A-03; PI Duncan)