
Presented by:

ADOP and
Customizations

Mike Swing

President

TruTek

mswing@trutek.com

@mike_swing

Webinar Mechanics

 Submit text questions in the chat log.

 Q&A addressed at the end of the session. Answers will be posted
within two weeks on our new LinkedIn Group, EBS Answers:
http://www.linkedin.com/groups/EBS-Answers-4683349/about

 Polling questions will be presented during the session. If you want
CPE credit for this webinar, you must answer all of the polling
questions.

 A recording of today’s event will be available for 90 days for
conference registrants.

2|

http://www.linkedin.com/groups/EBS-Answers-4683349/about

Learning Objectives

Objective 1: Understand how to modify
customizations to make them minimally online
patch-compliant or fully online patch-enabled.

Objective 2: Learn about ADOP, the Online
Patching Utility, options and how to use the
options.

Objective 3: Examine the required steps to fully
enable custom code for online patching,
including creating forward cross edition triggers
and reverse cross edition triggers.

3|

eprentise Can… …So Our Customers Can:

Consolidate Multiple EBS Instances

Change Underlying Structures and

Configurations

 Chart of Accounts, Other Flexfields

 Merge or Split Ledgers or Sets of

Books, Operating Units, Legal

Entities, Inventory Organizations

 Calendars, Currency, Costing

Methods

 Asset Revaluation, Inventory

Valuation

Separate Data

Finished But Not Done®

: Transformation Software for E-Business Suite

Reduce Operating Costs and Increase

Efficiencies

 Shared Services

 Data Centers

Adapt to Change

 Align with New Business Initiatives

 Mergers, Acquisitions, Divestitures

Avoid a Reimplementation

Reduce Complexity and Control Risk

Improve Business Continuity, Service Quality

and Compliance

Streamline Operations with Visibility to All Parts

of the Business

Establish Data Quality Standards and a Single

Source of Truth

Company Overview: Incorporated 2007, Helene Abrams, CEO

4|

Latest Book
Sponsored by

Delphix and

ePrentise

by Mike Swing

5|

Online Patching

See Oracle E-Business Suite Directions:

Slashing Downtimes with Online

Patching – Kevin Hudson

6

6|

Online Patching
 All EBS patches for

Release 12.2 and beyond
are Online Patches

 Online Patching of code
is enabled by the Dual
File System and 11gR2
Database Editioning
features

 Online Patching of
transactional tables is
enabled by Editioning
Views and Cross-
Edition Triggers

 The Patch Edition
becomes the Run
Edition at Cutover

Patch Edition

Run Edition

7

7|

R12.2 Online Patching

https://blogs.oracle.com/stevenChan/ent

ry/glimpses_of_e_business_suite

8|

Switching Filesystems during
Cutover
 Before Cutover

RUN ===> fs1
PATCH ===> fs2

When you apply patches on R12.2 using ADOP, it will apply
the patch to the PATCH File system (fs2)

 2) Once the patching completed successfully, you run the
Cutover, and the filesystems switch , the RUN filesystem is
pointing to fs2 (patched APPL_TOP), and the PATCH
filesystem is pointing to fs1 (Not patched APPL_TOP)

RUN ===> fs2 (patched APPL_TOP)
PATCH ===> fs1

9|

Forward Cross Edition Triggers

 You might need to update an existing logical
column either to:
 Change the column definition (data type, data

length, not null constraint)

 Change the column data (how data is stored in the
column)

 To update existing data without disturbing the
running application we must create a new
physical column (called a revised column) to
hold the updated data.

10|

Data is updated in the Patch
Edition during Patching

 During patching, data updates are propagated from the Run
Edition to the Patch Edition using Cross-Edition Triggers

Planning and Preparing for Your

Upgrade to Oracle E-Business Suite

12.2 – Anne Carlson OOW12

11|

Cross-Edition Triggers Update Data
in the Patch Edition

Planning and Preparing for

Your Upgrade to Oracle E-

Business Suite 12.2 – Anne

Carlson OOW12

12

12|

Reverse Cross Edition Triggers

 The reverse cross-edition trigger only fires
when the table contents is changed from the
patch edition (such as during seed data
loading).

13|

Editioned Database Objects

 Editioned Database Objects may have a
different definition in each database edition.

 Editioned database object types are:
 View (Ordinary)

 PL/SQL Package

 PL/SQL Trigger

 User-Defined Type (Editioned)

 Synonym

 Virtual Private Database Policy

14|

Effectively-Editioned Database
Objects

 Tables and Materialized Views

 Tables - Since the application is still running
during an online patch (and the application
data is continuously changing), it is not
possible to upgrade application data using a
one-time update script.

 Instead we will need to use a new technique
involving Editioning Views and Cross Edition
Triggers.

15|

Editions and Tables

 Tables cannot be versioned: there is only one
definition of a table across all Editions

 Data is not versioned: a record exists once and only
once

 The solution for managing changes to Tables:
Editioning Views and Cross Edition Triggers.

 Editioning Views are defined on base table (no
joins) Editioning Views can have DML triggers
defined (just like base table).

 Using an editioning view in a query or DML
statement does not impact the performance of the
query or DML

16|

Materialized Views

 The Materialized View is a non-editioned object type,
and therefore a materialized view cannot directly
reference editioned objects.

 To avoid this limitation, Oracle E-Business Suite Online
Patching technology implements a new Effectively
Editioned Materialized View compound object.

 Application developers create and maintain the
Materialized View Definition (query) in an ordinary
view.

 The Online Patching technology then automatically
maintains a corresponding Materialized View
Implementation that is legal for editioned databases.

17|

SQL Replacements for PL/SQL
Functions
 To "Edition-enable" the APPS schema, non-

Editionable objects must not depend on
Editionable objects (NE !-> E). To meet this
requirement, the database object development
standards specify that Materialized Views
(Materialized Views, or MVs, are non-Editionable)
must not call PL/SQL functions (which are
Editionable).

 The examples below demonstrate how to replace
frequently- used Oracle Applications Technology
PL/SQL function calls with an equivalent SQL in
Materialized Views. You may continue to call built-
in PL/SQL functions such as "upper()".
fnd_profile.value() replaced with a SQL sub-select.

18|

SQL Replacements for PL/SQL
Functions
 Before:

 fnd_profile.value('MSC_HUB_REGION_INSTANCE')

 After:
 (select profile_option_value

from fnd_profile_option_values
where level_id = 10001
and (profile_option_id, application_id) =
(select profile_option_id, application_id
from fnd_profile_options
where profile_option_name =
'MSC_HUB_REGION_INSTANCE'))

 Note: This replacement is valid ONLY in a
Materialized View. For other uses of
fnd_profile.value(), continue using the normal
PL/SQL call.

19|

“Suggested (Best) Practices”

 Every application (release) sets the Edition it
requires when it connects to a session

At the same time it calls dbms_application_info

And sets other Context details

Applications should never access tables – all
access should be through views

Only through views can the data structure itself
be Editioned

 Even triggers should be on the Editioning View

20|

Drop Object in Edition

 Drop Object in an Edition stops the inheritance
from previous Edition.

 An Object no longer is carried forward
An Edition can have only one child – no branches
(yet)
DBMS_SQL.PARSE can be executed in a specific
Edition

 If no explicit edition is set for a session, the default
edition is used
ALTER DATABASE DEFAULT EDITION =
edition_name;

21|

DB Links & Materialized Views

 DB Links & Materialized Views are currently not
editionable

 Objects of an editionable type are not editionable
when used by a non-editionable object

 Data Dictionary Views

DBA_ALL_EDITIONS – editions in the database
DBA_ALL_OBJECTS – objects (inherited) in current
edition
DBA_ALL_OBJECTS_AE – actual objects across all
editions

22|

Invalid Objects by Edition

select count(*) from dba_objects where
status='INVALID'

and edition_name = SYS_CONTEXT('USERENV',
'CURRENT_EDITION_NAME');

23

23|

AD_ZD_TABLE.UPGRADE

Upgrade the table for Online Patching using
the AD_ZD_TABLE.UPGRADE procedure.

 This will generate an Editioning View (EV) for
the table and then create an APPS synonym
that points to the Editioning View.

exec ad_zd_table.upgrade('APPLSYS',
'XXX_CUST')

 The table is now ready for use from the APPS
schema. The generated EV is named
XXX_CUST# and looks exactly like the table at
this point.

24|

Migrate to Editioning Views

1. Rename Table (for example to old table name_BASE)

2. Constraints continue to refer to the table

3. Create the Editioning View with the old table name

4. Using ‘CREATE OR REPLACE EDITIONING VIEW

5. Reroute privileges – grant on view rather than table

6. Recompile the triggers on the table

7. These now become triggers on the Editioning View

8. Recompile all invalid PL/SQL program units and Views

9. They now refer to the Editioning View instead of the table

10. VPD policies are reassigned to the View

11. Regular auditing and FGA is on the table

25|

Upgrade Table Definition

 Create Edition

 Set target Edition for session
Make desired changes to the table
Add columns, modify Columns, … (online redefinition)
Modify the Editioning View in the Edition

To reflect the table as its latest version should look
Perhaps hiding columns you eventually want to drop
(optional) Create Forward Cross-edition Trigger on
base table to have DML on previous Editions
made valid
(optional) Create Reverse Cross-edition Trigger on base

table to have DML on current Edition synch back

26|

Cross Edition Triggers

 If you remove a (mandatory) column from the
current Editioning View…
 a Reverse Cross-edition Trigger ensures that new records

get some value in that (invisible) column

 If you add a (mandatory) column to the table (and
the current Editioning View)…
 a Forward Cross-edition Trigger ensures that records

DMLed through previous Editioning View versions are
made valid

 (optionally) Apply Forward Cross-edition Trigger for all
existing records (created in old edition of the table)
Use DBMS_SQL.parse (with parameter
Apply_Crossedition_Trigger set to name of trigger)
Use DBMS_PARALLEL_EXECUTE

27|

Online Patching standards

Be aware that any custom code may need updating in
preparation for an upgrade to R 12.2.n, so that it is
compliant with Online Patching standards.

Prior to upgrading to R12.2.n the following must be run
early in the planning cycle:

 Online Patching Readiness Report to identify issues in
custom database objects that will be fixed
automatically Vs needing manual intervention.

 Manual Fix Readiness Report.

 Global Standards Compliance Checker script. Address
errors that are reported by this script

 Online Patching Database Compliance Checker. Fix any
violations of development standards listed in this
report.

28

28|

ADZDDBCC.sql and gscc.pl

 You must ensure your custom code complies with
the new standards that ensure the relevant
database objects and code can successfully be
patched online.

 Use the tools provided to review your
customizations for violations of Oracle E-Business
Suite Online Patching standards:

 Database Standards Checker (ADZDDBCC.sql) -
This utility scans the data dictionary for objects and
code that violate the standards.

 File system check report (gscc.pl) - This script scans
the file system for source files that violate the
standards.

29|

Check the Edition

 echo $FILE_EDITION

 select ad_zd.get_edition_type from dual;

 From SQL*Plus it is possible to change your
current edition.

SQL> exec ad_zd.set_edition('PATCH')

30

30|

Example of ADOP Patching
Cycle

$. <EBS_ROOT>/EBSapps.env run

$ adop phase=prepare

$ adop phase=apply patches=123456

$ adop phase=finalize

$ adop phase=cutover

$. <EBS_ROOT>/EBSapps.env run

$ adop phase=cleanup

31

31|

Online Patching Phases

Start an online patching cycle.

 Source the run edition environment file:

 $RUN_BASE/EBSapps/appl/APPS$CONTEXT_NAME.env

$ adop phase=prepare (runs fs_clone)

$ adop phase=apply

or,

$ adop phase=prepare,apply

32

32|

Poll Question

33|

ADOP Scripts

The examples use various SQL*Plus scripts and
command line tools like adop, xdfgen.pl and
xdfcmp.pl

$ source /u01/R122_EBS/EBSapps.env run
...

$ which adop
/u01/R122_EBS/fs_ne/EBSapps/appl/ad/bin/adop
$ which xdfgen.pl
/u01/R122_EBS/fs2/EBSapps/appl/fnd/12.0.0/bin/x
dfgen.pl
$ which xdfcmp.pl
/u01/R122_EBS/fs2/EBSapps/appl/fnd/12.0.0/bin/x
dfcmp.pl

34|

ADZD Scripts are in
$AD_TOP/sql

All ADZD* scripts are found under $AD_TOP/sql.
For convenience, you can add this directory to
the SQLPATH environment variable so that you
can refer to the scripts by simple name.

$ SQLPATH=$AD_TOP/sql; export SQLPATH

35|

ADOP Scripts

 ADZDDBCC - database compliance checker, shows violations of
the database object development standards documented in the
Oracle E-Business Suite Developer's Guide, Part No. E22961.
Warning: this script takes a long time to run.

 ADZDSHOWED - Show database editions and current edition.

 ADZDSHOWLOG - Show full diagnostic log for online patching
infrastructure.

 ADZDSHOWLOGEVT - Show only event and error messages from
online patching diagnostic log (a useful summary, without the
detailed statement text).

 ADZDSHOWLOGERR - Show only error messages from online
patching diagnostic log.

 ADZDSHOWEV TABLE_SYNONYM_NAME - Show editioning view
column mapping for table.

 ADZDSHOWTAB TABLE_SYNONYM_NAME - Show table
information and related objects.

36|

ADOP Scripts

 ADZDSHOWMV MVIEW_NAME - Show materialized view
information and related objects.

 ADZDSHOWTS - Show important tablespace status. Ensure
that you have enough SYSTEM tablespace.

 ADZDCMPED - Compare Patch Edition with Run Edition.
Warning: this script may take a long time to run.

 ADZDSHOWDDLS - Show stored DDL summary by phase.

 ADZDALLDDLS - Show stored DDL statement text.

 ADZDDDLERROR - Show stored DDL execution errors and
messages.

 adutlrcmp - Recompile all objects, with before/after status
report. Warning: this script may take a long time to run.

37|

Expert Scripts
 ADZDSHOWOBJS - Show Object Summary per edition. Counts

of actual and stub (inherited) editioned object per edition.

 ADZDSHOWAOBJS - Show Actual Objects in the current
edition. These are the editioned objects that have been
changed by the patch.

 ADZDSHOWIOBJS - Show Inherited Objects in the current
edition. These are the editioned objects that remain untouched
in the patch edition. This script is used to confirm that the adop
actualize_all command has worked properly.

 ADZDSHOWCOBJS - Show Covered Object Summary per
edition. Count of objects in old editions that have a
replacement in the run edition. This script is used to confirm
that the adop cleanup command has worked properly.

 ADZDSHOWCOBJX - Show Covered Object List. List of objects
in old editions that have a replacement in the run edition.

38|

Expert Scripts

 ADZDSHOWSM - Show Seed Manager status.

 ADZDSHOWTM - Show Table Manager status.

 ADZDSHOWAD - AD (online patching) database
object status

 ADZDSHOWSES - Show sessions connected to the
database (by edition).

 ADZDSHOWDEP OBJECT_NAME - Show objects
that OBJECT_NAME depends on.

 ADZDSHOWDEPTREE OBJECT_NAME - Show full
dependency tree of objects that OBJECT_NAME
depends on.

39|

ADOP Phases

 prepare

 apply

 finalize

 cutover

You can use a comma-separated list to specify multiple

phases. For example, 'phase=prepare,apply'

Note: Neither the abort nor fs_clone phases can be

specified with any other phase.

 Cleanup

 fs_clone

 Abort

 actualize_all

40|

Example of ADOP Patching
Cycle

$. <EBS_ROOT>/EBSapps.env run

$ adop phase=prepare

$ adop phase=apply patches=123456

$ adop phase=finalize

$ adop phase=cutover

$. <EBS_ROOT>/EBSapps.env run

$ adop phase=cleanup

41

41|

Source the Run Edition

Warning: It is only safe to connect to the patch
edition while an Online Patching session is in
progress. Specifically, the Patch Edition is
created during the "adop phase=prepare"
operation, and persists until the cutover or
abort operation is run.

42

42|

Prepare Phase

1. During the prepare phase, adop performs the following steps.

2. Checks whether to perform a cleanup, which will be needed if
the user failed to invoke cleanup after the cutover phase of a
previous online patching cycle.

3. Validates system configuration to ensure that the system is
ready to start an online patching cycle.

4. Checks to see if the database is prepared for online patching:

5. Checks system configuration on each application tier node. A
number of critical settings are validated to ensure that each
application tier node is correctly registered, configured, and
ready for patching.

6. Checks for the existence of the "Online Patching In Progress"
(ADZDPATCH) concurrent program. This program prevents
certain predefined concurrent programs from being started,
and as such needs to be active while a patching cycle is in
progress (that is, while a database patch edition exists).

43|

Prepare Phase

 If the ADZDPATCH program has not yet been
requested to run, a request is submitted.

 The status of ADZDPATCH is determined. If it is
pending, it may be waiting for an incompatible
program to finish.

At that point, its status will change to running,
and it will allow the prepare phase to proceed.

A message to this effect is displayed to the
user.

44|

Prepare Phase

 If the concurrent managers are all down, the prepare
phase continues, with ADZDPATCH entering a status of
pending (with the highest priority) until the managers
are started.

 If the concurrent managers are partially up, but there is
no manager defined that can run ADZDPATCH, then the
prepare phase will exit with an error.

 If the concurrent managers are up, and there is one
defined that can run ADZDPATCH, processing will loop
until ADZDPATCH changes status from pending to
running (that is to say, as noted in Step 2, no
incompatible programs are found). The prepare phase
then continues.

 ADZDPATCH is cancelled when the cutover phase is
complete.

45|

Prepare Phase

 Invokes the TXK script
$AD_TOP/patch/115/bin/txkADOPPreparePhaseSynch
ronize.pl to synchronize the patches which have been
applied to the run APPL_TOP, but not the patch
APPL_TOP. The script depends on the adop repository
for patches that have been applied on the run
APPL_TOP but not the patch APPL_TOP.

 Checks the database for the existence of a patch
edition, and creates one if it does not find one.

 Calls the
$AD_TOP/patch/115/bin/txkADOPPreparePhaseSanity
Check.pl script again to confirm that the database
connection to the patch edition is working.

46|

FS Clone $ adop
phase=fs_clone
 The "fs_clone" command recreates the patch

edition file system by making a full copy of the run
edition file system.

 This command is required when the patch edition
file system cannot be automatically synchronized
with the run edition file system by adop.

 Run the fs_clone command if you have done any of
the following actions:
 Applied middle-tier technology patches to the run

edition
 Changed run edition files manually (outside of online

patching)
 Aborted an online patching cycle

47|

adop phase=apply

 Note that the adop command will apply patches to
the patch edition no matter what edition your
current environment is set to.

 If the adop apply commands fail, check and correct
the problem, then run the adop apply command
again, adding the "restart=yes" option.

 $ adop phase=apply patches=16605855
restart=yes

 You can abandon an existing failed patch and apply
the replacement patch by running the apply
command with the "abandon=yes" parameter.

 $ adop phase=apply patches=16699999
abandon=yes

48|

hotpatch

 hotpatch=yes applies the specified patches to
the run edition while this edition is in active
use.

 Important: Only use hotpatch mode if support
for doing so is explicitly stated in the patch
readme.

49

49|

apply_mode=downtime

$ adop phase=apply patches=123456
apply_mode=downtime

Allows patches to be applied in downtime
mode.

Added to adop phase=apply command.

 apply_mode=downtime applies the specified
patches in downtime mode. When using this
mode, you only run the apply phase.

Downtime mode is only supported for
production use where specifically advised by
Oracle.

50

50|

apply_mode=downtime
From Doc ID 1903052.1 for AD, TXK RUP4

3.3.1 Alternative For Systems Experiencing Online
Patching Issues

 If your system is currently experiencing problems
executing online patching cycles, you may apply the
AD/TXK consolidated patches in downtime mode.

 Execute the following commands:
 Shut down application tier services on all nodes.
 $ adop phase=apply patches=18491990,18497540

apply_mode=downtime
 Start up application tier services on all nodes.

51

51|

AD RUP5 Patch 18283295
downtime

Run adgrants.sql

SQL>
@$ORACLE_HOME/appsutil/admin/adgrants.sq
l <APPS schema name>

R12.AD.C.DELTA.5 18283295

Apply the patch with ADOP: adop phase=apply
patches=18283295 apply_mode=downtime

52

52|

Downtime Mode

 R12.AD.C.Delta.5 “downtime” mode can be
used, This does not have an online patching
cycle and is quicker

 R12.2. patches are not normally tested in
downtime mode. It is only supported where
explicitly documented or when directed by
Oracle Support or Development (e.g. 12.2.5
RUPs)

53|

flags

 Specifies whether adop should quit on any
driver action failure when applying a patch.

 autoskip/noautoskip

Default is 'noautoskip' (quit). You can force
processing to continue by specifying
flags=autoskip on the command line or in the
input file.

54|

options=autoconfig

 autoconfig

 Purpose: Tells adop to run AutoConfig
automatically.
Default: autoconfig

 Use options=noautoconfig if you are applying a
number of patches in sequence and want to run
AutoConfig once, after applying the last patch of
the sequence.

 Comments: The dual file system in Release 12.2
means that there is no need to shut down
application tier services before running
AutoConfig.

55|

options=forceapply

 forceapply

 Purpose: Tells adop to reapply a patch that has
already been applied.

Default: noforceapply

Comments: Use the nocheckfile option in
conjunction with forceapply to rerun files which
may already have been executed.

56|

options=forceapply

 If you try to apply a patch that has already
been applied and do not specify the forceapply
parameter, adop will display an error like this:
 [WARNING] Skipping the application of patch

14125999_AR since it has been already applied

 [WARNING] Hint: Patches can be applied again by
specifying options=forceapply when invoking adop

57|

options=validate

 Purpose: Tells adop whether to connect to all
registered Oracle E-Business Suite schemas at
the start of the patch.

Default: novalidate

Use options=validate to validate password
information for all Oracle E-Business Suite
schemas.

 Comments: Useful for finding problems with
incorrectly registered Oracle E-Business Suite
schemas or schemas with invalid passwords

58|

merge

Used to merge multiple patches. You can
merge the unified driver files into a single
driver file that is passed to adop.

 yes/no

 If merge is set to the default of 'no', then the
patches are applied sequentially in the order
listed.

 You can set the merge parameter to 'yes' in
order to merge a base patch with any required
corrective patches, so that the corrected merge
patch is applied as a single operation.

59|

abandon

 Specify whether to abandon a previous failed
attempt to apply a patch. Use this mode if you
want to continue with the online patching actions
even though a patch apply has failed.

 Note: If there was an error in the previous run, and
'abandon' is not set to 'yes', the same parameters
will be re-used that were used in the failed run.

 yes/no

 Default value is 'no'. You cannot set the abandon
parameter to 'yes' if the restart parameter is also
set to 'yes'.

60

60|

abandon

Prepare

Apply

FinalizeCutover

- offline

Cleanup

Abandon

Starts the

patch from

the

beginning

Abandon

Start ADOP

Patching

Cycle

61

61|

Restarting adop

 If you have shut down the workers, or if adop quits
while performing processing actions, it saves all the
actions completed up to that point in restart files.
Investigate and resolve the problem that caused
the failure, then restart adop. After you restart
adop, it will ask if you want to continue with the
previous session (at the point where the processing
stopped), or start a new session.

 Note: A difference from adpatch is that adop
restart behavior is controlled by the abort=Y/N
and restart=Y/N options in the input_file that can
be passed to the adop command in the apply
phase.

62|

restart

 Specify if the previous failed patch apply should be
restarted.

 This allows you to retry applying the previous
patch from where it left off.

 This is useful if you were able to correct the cause
of the error and want patch application to continue
executing.

 yes/no

 Default value is 'no'.

 You cannot set the restart parameter to 'yes' if the
abandon parameter is also set to 'yes'.

63

63|

restart

Prepare

Apply

FinalizeCutover

- offline

Cleanup

Restart

Starts the

patch from

the restart

directory

using

fnd_install_

processes

Restart

Start ADOP

Patching

Cycle

64

64|

autoskip

 Controls whether failed jobs are automatically
skipped during patching. If the value is set to 'yes',
failed jobs are skipped and a report of the skipped
jobs is generated at the end of the patch apply.

 If the value is set to 'no', failed jobs will cause the
patch to exit with error.

 yes/no Default value is 'no'.

 A report, ADZDPATCHSTAT.sql, in the finalize phase
gives the status of the patches that were applied in
a particular session: SUCCESS, SKIPPED and
SUCCESS, or SKIPPED and FAILED.

65|

skipsyncerror

 Enables the user to specify that any
synchronization errors in the prepare phase are
expected to be fixed automatically in the
synchronization that takes place with
subsequent patches.

 yes/no Default value is 'no'.

 Set the value to 'yes' in order to work around
synchronization failures that may occur when
patches that failed to apply correctly in a
previous patching cycle are synchronized
during the prepare phase.

66|

Stopping adop

You can abandon a patching cycle by using the
command:

$ adop phase=abort

Important: Only the prepare or apply phases of
the online patching cycle can be aborted. That
is, you cannot run the abort phase after the
cutover phase has been run.

67

67|

$ adop phase=abort

 If a patching cycle is failing and the issue cannot be
resolved quickly, it is possible to abort the patching
cycle and return to normal runtime operation. The
patch edition will be dropped.

 Important: This abort command can only be used
before successful completion of the cutover phase.
After cutover, the system is running on the new
edition, and abort is no longer possible for that
patching cycle.

 Warning: Aborting a patching cycle will drop the
patch edition, but you must then run the cleanup
and fs_clone phases before starting a new patching
cycle. The cleanup must be a full cleanup ($ adop
phase=cleanup cleanup_mode=full).

68

68|

$ adop phase=abort

For example:

$ adop phase=prepare

$ adop phase=apply patches=123456

$ adop phase=abort

$ adop phase=cleanup cleanup_mode=full

$ adop phase=fs_clone

69

69|

Abort Drops the Patch Edition

Prepare

Apply

FinalizeCutover

- offline

Cleanup

Abort

Drops

the Patch

Edition

Abort

Start ADOP

Patching

Cycle

70

70|

Abort
If an online patching cycle has failed for some reason that

cannot be corrected, you can abort the online patching
cycle and return to normal operation.

The adop "abort" command drops the database patch
edition and removes or abandons any changes made
during the the online patching cycle.

If the online patching cycle has completed the cutover
phase, then you can no longer abort the patching cycle.

When aborting an online patching cycle, you must also run
the cleanup and fs_clone commands to fully eliminate
changes from the patching cycle. The abort command is
run as follows:

$ adop phase=abort
$ adop phase=cleanup
$ adop phase=fs_clone

71|

ADOP Cycle - Abort

R12.2. Maintenance Guide

72

72|

Restarting Adop From A Failed
Session (Doc ID 1963186.1)

'adop phase=abort‘

'adop phase=cleanup cleanup_mode=full‘

'adop phase=fs_clone'

restart the patching cycle by setting the environment again
and run:

'adop phase=prepare'

Number of workers can be specified on the command line
with the command: adop phase=apply workers=8
patches=patch number patchtop=<your patch directory>

You can use 'adop -status' to check the current status of
the adop patching cycle.

73

73|

https://support.oracle.com/epmos/faces/ui/patch/PatchDetail.jspx?parent=DOCUMENT&sourceId=1963186.1&patchId=number

finalize_mode

 Used to specify whether the finalize or cutover
phases should be performed in full mode or quick
mode.
 full

 standard

 quick

 finalize_mode=full gathers statistics to help
improve performance. Finalize will take about one
hour longer if this mode is specified.

 finalize_mode=quick does not gather statistics, and
therefore completes more quickly. This is the
default.

74

74|

Poll Question

75|

Cutover

 Shut down internal concurrent manager: Specify
"cm_wait=<maximum_minutes_to_wait>“, if you do
not wish to wait indefinitely.

 Shut down application tier services:

 Cutover database: Promote patch database edition
to become the new run database edition, using
adzdpmgr.pl script.

 Cutover file system: Promote patch file system to
become the new run file system, switching the
$FILE_EDITION values in the patch and run
enviroments. The current patch APPL_TOP becomes
the new run APPL_TOP, and the current run
APPL_TOP becomes the new patch APPL_TOP.

76|

Cutover

 Retire old editions: Disable access to old database
editions.

 Terminate old database sessions: Terminate any
database connections to the old run edition of the
database.

 Start application tier services: Application tier
services are restarted, on the new run edition. The
system is now available again to users.

Note: The adop utility invokes the TXK script
txkADOPCutOverPhaseCtrlScript.pl to perform
tasks 1, 2, 3, 5, and 6. Task 4 is performed by
AutoConfig.

77

77|

Reduce Cutover Time

 It is important to distinguish between the time
needed for the whole cutover phase, and the
downtime period within the phase. The actual
downtime (during which users cannot log in) is
significantly shorter than the whole phase. To help
reduce the overall time taken by cutover, you can
do three things:
 Run the finalize phase explicitly, to obviate the need for

cutover to do so.
 Shut down the concurrent managers before running

cutover, to avoid having to wait for concurrent requests
to complete. Alternatively, ensure no long-running
concurrent jobs are submitted while a patching cycle is
in progress.

 Ensure you are using the maximum number of parallel
workers your system will support.

78|

cleanup_mode

 Provides cleanup processing control.
 quick

 standard

 full

 cleanup_mode=quick performs minimum cleanup,
which includes removal of cross edition triggers and
obsolete seed data.

 cleanup_mode=standard does the same as quick
mode, and also removes (drops) obsolete editioned
code objects (covered objects). This is the default.

 cleanup_mode=full does the same as standard mode,
and also drops obsolete columns and old editions.

79|

ADZDSHOWED.sql

You can also see the names of past and present database
editions using the ADZDSHOWED.sql script.

$ sqlplus apps/apps @ADZDSHOWED
"---- Editions ----"
Edition Name Type Status Current?
--------------- -------- -------- --------
ORA$BASE RETIRED
V_20120510_1507 OLD RETIRED
V_20120510_1547 RUN ACTIVE CURRENT
V_20120511_1528 PATCH ACTIVE

The script lists the existing database editions and
identifies the OLD, RUN, and PATCH editions. The
Current flag indicates which edition you are currently
in.

80|

actualize_all

 Creates new copies of all code objects in the patch edition.

 As each online patching cycle is completed, the database
will accumulate an additional old database edition.

 If the number of these grows too large, system performance
will start to be affected.

 When the number of old database editions reaches 25 or
more, you should consider dropping all old database
editions by running the adop actualize_all phase and then
performing a full cleanup.

 This procedure will take a large amount of time (significantly
longer than a normal patching cycle), and should only be
performed when there is no immediate need to start a new
patching cycle

81|

Status of Operations

$adop -status

$adop -status -detail

This option will give a summary of last ten adop session
IDs, and full details of the file system and database
changes introduced by a patch. It also shows the log file
location of the current patching cycle.

82

82|

Adop -status
Node Node Phase Status Started Finished Elapsed

Name Type

ebs01 master PREPARE COMPLETED 08-APR-15 08-APR-15 0:59:24
13:01:57 14:01:21

APPLY NOT STARTED

FINALIZE NOT STARTED

CUTOVER NOT STARTED

CLEANUP NOT STARTED

ebs02 slave PREPARE NOT STARTED

APPLY NOT STARTED

FINALIZE NOT STARTED

CUTOVER NOT STARTED

CLEANUP NOT STARTED

83

83|

Adop -status

ebs01 master

PREPARE SESSION ABORTED 0:31:32

APPLY SESSION ABORTED 0:07:44

FINALIZE SESSION ABORTED 1:44:52

CUTOVER SESSION ABORTED 15:18:54

CLEANUP COMPLETED 25:21:19

ebs02 slave

PREPARE SESSION ABORTED 0:32:25

APPLY SESSION ABORTED 0:00:02

FINALIZE SESSION ABORTED 1:44:52

CUTOVER SESSION ABORTED 15:17:57

CLEANUP COMPLETED 25:21:19

84

84|

Adop –status abandoned

ebs01 master

PREPARE SESSION ABORTED 0:31:32

APPLY SESSION ABORTED 0:07:44

FINALIZE SESSION ABORTED 1:44:52

CUTOVER SESSION ABORTED 15:18:54

CLEANUP COMPLETED 0:56:20

ebs02 slave

PREPARE COMPLETED 0:32:25

APPLY COMPLETED 0:00:02

FINALIZE COMPLETED 1:44:52

CUTOVER ABANDONED 15:17:57

CLEANUP NOT STARTED

85

85|

General adop log information

Dump of AD_ZD_LOGS table given by
ADZDSHOWLOG.sql

 Contents of the most recent 3 sessions in
$APPL_TOP_NE/../log/adop where adop logs
are stored

 Contents of AD_ZD_DDL_HANDLER table

Output of adop -status

86|

adopscanlog

 To scan all log directories of the latest adop session for errors:

$ adopscanlog

 The utility can also be run with various options. Examples include:

 To scan log directories relating to the latest run of adop in the
latest session: $ adopscanlog -latest=yes

 To scan log directories relating to the latest run of the specified
phase, in the latest session: $ adopscanlog -latest=yes -
phase=<phase_name>

 To scan all log directories of a given session (represented by a
session_id) for errors: $ adopscanlog -session_id=<number>

 To see a complete list of supported parameters: $ adopscanlog -
help

87|

Patch Verification

Find the list of nodes, appltop_id’s and instances

Review the following tables:

AD_ADOP_SESSIONS

AD_ADOP_SESSION_PATCHES

FND_NODES

ADOP_VALID_NODES

FND_APPLICATION

FND_ORACLE_USERID

FND_PRODUCT_INSTALLATIONS

88

88|

ENABLE_ADPATCH=YES

 export ENABLE_ADPATCH=YES
adpatch works in standalone mode

89

89|

Online Patching Future
Enhancements

 Planned
 Increase number of diagnostic tools for Online

Patching

 Allow testing against Patch Edition after patching is
complete

Under Investigation
 Rollback patches after cutover

90

Customize the Patch Edition

Before running finalize_mode

Apply any customizations to patch edition
(optional):

$. <EBS_ROOT>/EBSapps.env patch

$ sqlplus apps/apps @my_custom_script_01

$ sqlplus apps/apps @my_custom_script_02

91

91|

Manually Apply a Patch

 Copy patch files to their destination directories in
the patch edition.

 Execute any commands necessary to deploy
changes to the file system.

 Execute any commands necessary to deploy
changes to the database.

 Execute any commands necessary to generate or
compile dependend files or objects.

 Update the custom synchronization driver to
include any file system actions that must be
executed again on the next prepare phase, in order
to synchronize the alternate file system.

92|

Example of installing a new PL/SQL
package via a Manual Patch
$ source /u01/R122_EBS/EBSapps.env patch

$ cd $PATCH_TOP/manual_patch

$ copy_files.sh

cp fnd/patch/115/sql/* $FND_TOP/patch/115/sql

$ manual_db_steps.sh

sqlplus apps/apps
@$FND_TOP/patch/115/sql/XXX_CUST_S.pls

sqlplus apps/apps
@$FND_TOP/patch/115/sql/XXX_CUST_B.pls

93|

Confirm Manual Patch
Changes

$ source /u01/R122_EBS/EBSapps.env patch

$ sqlplus apps/apps
SQL> show errors package XXX_CUST
SQL> show errors package body XXX_CUST
SQL> quit

94|

Run Manual Patch Phases
 Finalize

$ adop phase=finalize

 Cutover
$ adop phase=cutover
$ source /u01/R122_EBS/EBSapps.env run

 Cleanup
$ adop phase=cleanup

$ adop phase=cleanup cleanup_mode=quick
Use quick cleanup when you need to start another patch

cycle

Use full cleanup to remove obsolete table columns. Full
cleanup is required after aborting an online patching cycle.

$ adop phase=cleanup cleanup_mode=full (post 12.2.2)

95|

Register your Custom
Application

Use the AD Splicer utility (adsplice) to register
your custom application as a product within
Oracle E-Business Suite

You can use Patch 3636980, "Support
Diagnostics (IZU) patch for AD Splice", to help
you create your custom application.

adsplice performs the following steps:
Makes the new user edition-enabled.

Enables Edition-Based Redefinition (EBR) for the
custom objects.

96|

https://support.oracle.com/epmos/faces/ui/patch/PatchDetail.jspx?parent=DOCUMENT&sourceId=1577661.1&patchId=3636980

Java or BC4J Customizations

If your customizations will include custom Java
or BC4J code or extensions, apply the following
patches to your development environment in
hotpatch mode using the AD Online Patching
utility (adop).

 17217965:R12.TXK.C (TEMPLATE CHANGE
REQUIRED TO UPLOAD THE CLASS FILES
RELATED TO CUSTOMIZATIONS)

 17217772:R12.AD.C (NEED UTILITY TO
GENERATE CUSTOMALL.JAR)

97|

Deploying Custom Files
 Connect to the run edition file system on your

development environment.

 Copy the custom files to the appropriate directory on the
run edition file system.

 If you copied any custom files under the $JAVA_TOP
directory, run the adcgnjar utility to generate and sign a
JAR file containing these files. When prompted, enter the
user name and password of the APPS user.

 If necessary, use the appropriate utility for your product
or component to upload the custom files to the database.

 Add entries for the custom files to the custom
synchronization driver file to ensure that the adop utility
synchronizes these files between the run file system and
the patch file system the next time you run the prepare
phase.

98|

Deploying Custom Code

Apply customizations as an online patch: The
custom code is patched into the patch edition
when an online patching cycle is open. This is the
most recommended approach but requires
compliance to the full set development standards.

Apply customizations as a downtime patch: The
custom code is patched into the run edition,
either during an extended online patching
cutover downtime, or as a separate downtime
patch.

Hot Patching of Custom Code is Explicitly
Discouraged.

99|

Step 1: Create or Replace
Editioned Database Objects
 Step 1: Create or Replace Editioned Database

Objects in your development database

 If your application changes will cause significant object
invalidation in the development database, you may
wish to call the "ad_zd.compile" procedure to recompile
invalid objects in the run edition.

 Due to a database limitation the user_objects or
all_objects dictionary views only return correct object
status after running a full compilation procedure
(utl_recomp.recomp_parallel or ad_zd.compile).

 As a workaround, you can check object status using the
ad_objects view included with online patching.

select * from ad_objects where status='INVALID';

100|

Step 2: Create the patch
$ cd $PATCH_TOP/manual_patch

$ vi copy_files.sh

Insert the following:

cp fnd/patch/115/sql/* $FND_TOP/patch/115/sql

$ vi manual_db_steps.sh

Insert the following:

sqlplus apps/apps
@$FND_TOP/patch/115/sql/XXX_CUST_S.pls

sqlplus apps/apps
@$FND_TOP/patch/115/sql/XXX_CUST_B.pls

101|

Create a New Table

 create table APPLSYS.XXX_CUST
(
ID NUMBER(15) not null,
TYPE VARCHAR2(8) not null,
DESC VARCHAR2(1000)
)
tablespace APPS_TS_TX_DATA

/
create unique index APPLSYS.XXX_CUST_U1
on APPLSYS.XXX_CUST (ID)
tablespace APPS_TS_TX_IDX

/

102|

AD_ZD_TABLE.UPGRADE

Upgrade the table for Online Patching using the
AD_ZD_TABLE.UPGRADE procedure.

This will generate an Editioning View (EV) for the
table and then create an APPS synonym that
points to the Editioning View.

exec ad_zd_table.upgrade('APPLSYS',
'XXX_CUST')

The table is now ready for use from the APPS
schema. The generated EV is named XXX_CUST#
and looks exactly like the table at this point.

103|

ADZDSHOWEV.sql

You can see a display of the EV column mapping
with the ADZDSHOWEV.sql script:

$AD_TOP/sql/ADZDSHOWEV.sql XXX_CUST

-- EV Column Mapping

VIEW_COLUMN -> TABLE_COLUMN

--------------------------- ---- -------------------

ID = ID

TYPE = SERVICE_TYPE

DESC = DESC

104|

Extract the table definition with
the xdfgen.pl utility
Extract the table definition from your development database using

the xdfgen.pl utility.

Due to a database requirement you must first insert at least one row into
the table before extraction will work.

For all instances on R12.AD.C.Delta.7 and higher:

perl xdfgen.pl <apps_user>/<apps_password> XXX_CUST

For single node database instances on R12.AD.C.Delta.6 and lower:

perl xdfgen.pl <apps_user>/<apps_password>@<DB_SID> XXX_CUST

For RAC instances on R12.AD.C.Delta.6 and lower:

perl xdfgen.pl <apps_user>/<apps_password>@<DB_Instance_Name>
XXX_CUST

This produces a file called 'xyz_user_service.xdf' that contains the
definition of the table along with any related indexes, sequences, and
policies

105|

Create the patch

Use the XDF file to create the necessary patch files:

fnd/patch/115/xdf/xxx_cust.xdf

Manual apply phase actions for the file system:

cp fnd/patch/115/xdf/* $FND_TOP/patch/115/xdf

Manual apply phase actions for the database:

xdfcmp.pl
<applsys_user>/<applsys_password>@$TWO_TASK
$FND_TOP/patch/115/xdf/xxx_cust.xdf
<apps_user>/<apps_password>

When the patch is applied, the XDF will create the table
and index, and will automatically call the
AD_ZD_TABLE.UPGRADE procedure to generate the
editioning view and APPS table synonym.

106|

Update an existing column

You might need to update an existing logical column either to

 Change the column definition (data type, data length, not
null constraint)

 Change the column data (how data is stored in the column)

To update existing data without disturbing the running
application we must create a new physical column (called a
revised column) to hold the updated data.

Note that online patching tools will not allow you to alter the
existing physical column definition in any way, even if the
change seems "compatible" with the existing column data.

To make any kind of change to an existing column you must
code a revised column using the procedure described in this
section.

107|

Update an existing column

In this example, we change TYPE codes from the
original two-value scheme (‘BASIC’, ‘PREMIUM’)
to a three-value scheme (‘BRONZE’, ’SILVER’,
’GOLD’).

Since the new values are not compatible with the
existing application, we must use a revised
physical column to hold the new data.

108|

Update an existing column

Create a revised column in your development database

Revised columns use a naming standard of
COLUMN_NAME#REVISION, where a later REVISION tag must be
alphabetically greater than the earlier revision.

Since this is the first revision of the column, start with revision ‘1’.

The data upgrade logic will be placed in a Forward Crossedition
Trigger described later.

Alter the table in your development database to add the new revised
column, and remember to call the AD_ZD_TABLE.PATCH procedure
whenever you change the table structure manually:

alter table APPLSYS.XXX_CUST
add (SERVICE_TYPE#1 varchar2(8) default '*NULL*' not null)

/

exec ad_zd_table.patch('APPLSYS', 'XXX_CUST')

109|

Update an existing column

Since the revised column is not null, specify a
default value so that the column can be created
with the not null constraint in a single
operation.

The actual value of the column will be populated
by a cross-edition trigger, so the default value
does not matter, but it is useful to specify a
default value which clearly indicates that the
column is not yet populated.

110|

Update an existing column

@ADZDSHOWEV XXX_CUST

VIEW_COLUMN -> TABLE_COLUMN

------------------------------ ---- ------------------------------

ID = ID

TYPE ===> TYPE#1

DESC = DESC

STATUS = STATUS

Notice that after executing the PATCH procedure the TYPE column in
the EV (the logical column) is now mapped to the revised physical
column.

Also notice that this new column is not yet populated with data.
That comes next.

111|

Create a Forward Crossedition
Trigger
Create a Forward Crossedition Trigger to populate the revised

column.

A Forward Crossedition Trigger (FCET) is a table trigger with a
special rule about how it fires: During online patching, the FCET is
created in the Patch Edition, but (being a crossedition trigger) it
will only fire on changes made in the parent (Run) edition.

The upgrade logic is implemented as a trigger instead of a simple
update statement so that the upgrade logic can be re-executed on
rows that are inserted or changed by the running application.

Although the FCET is intended to be installed in the Patch Edition
during an online patch, you can create and test an FCET in the Run
Edition of a development database.

To create an FCET, start with the Forward Crossedition Trigger
Template and add the data upgrade logic to the trigger body.

112|

Forward Cross-edition Trigger
Template

REM ---- Create FCET ----
REM dbdrv: sql ~PROD ~PATH ~FILE \
REM dbdrv: none none none sqlplus &phase=ccet \
REM dbdrv: checkfile:~PROD:~PATH:~FILE
&un_<table_owner_app_short_name>
REM ---- Apply FCET ----
REM dbdrv: sql ad patch/115/sql
AD_ZD_TABLE_APPLY.sql \
REM dbdrv: none none none sqlplus &phase=acet \
REM dbdrv: checkfile:~PROD:~PATH:~FILE
<table_name>_F<change_number>

REM Copyright (c) 2013 Oracle, All Rights Reserved
REM $Header$
REM <table_name>_X<change_number>.sql
REM <description of change>

113|

Forward Cross-edition Trigger
Template
SET VERIFY OFF;

WHENEVER SQLERROR EXIT FAILURE ROLLBACK;
WHENEVER OSERROR EXIT FAILURE ROLLBACK;

create or replace trigger
<table_name>_F<change_number>

before insert or update on &1..<table_name>
for each row forward crossedition
/* follows <previous_fcet> */ disable

begin
<upgrade logic>

end;
/
commit;
exit;

114|

Forward Cross-edition Trigger

REM ---- Create FCET ----
REM dbdrv: sql ~PROD ~PATH ~FILE \
REM dbdrv: none none none sqlplus &phase=ccet \
REM dbdrv: checkfile:~PROD:~PATH:~FILE &un_fnd
REM ---- Apply FCET ----
REM dbdrv: sql ad patch/115/sql AD_ZD_TABLE_APPLY.sql \
REM dbdrv: none none none sqlplus &phase=acet \
REM dbdrv: checkfile:~PROD:~PATH:~FILE:fcet
XYZ_USER_SERVICE_F1

REM Copyright (c) 2013 Oracle Corporation, All Rights Reserved
REM $Header$
REM XYZ_USER_SERVICE_X1.sql
REM Update XYZ_USER_SERVICE SERVICE_TYPE to
BRONZE/SILVER/GOLD

SET VERIFY OFF;
WHENEVER SQLERROR EXIT FAILURE ROLLBACK;
WHENEVER OSERROR EXIT FAILURE ROLLBACK;

115|

Forward Cross-edition Trigger

create or replace trigger XXX_CUST_F1
before insert or update on &1..XXX_CUST
for each row forward crossedition
disable

begin
if :type = 'BASIC' then
:type#1 := 'BRONZE';

elsif :type = 'PREMIUM' then
:type#1 := 'GOLD';

end if;
end;
/
commit;
exit;

116|

Forward Cross-edition Trigger

 Create the trigger with the following naming standards:
 Crossedition Trigger Script Name:

<table_name>_X<change_number>.sql
 <change_number> is incremented for each successive patch to the

table

 Example: XYZ_USER_SERVICE_X1.sql, XYZ_USER_SERVICE_X2.sql, ...

 Forward Crossedition Trigger Name:
<table_name>_F<change_number>

 Reverse Crossedition Trigger Name:
<table_name>_R<change_number>

 For custom (manual) patches, you use the script
template and remove or ignore the "dbdrv" comments.
Your database apply script will include commands to
install and apply the FCET.

117|

Forward Cross-edition Trigger

Execute the SQL script to create the trigger and then call
the AD_ZD_TABLE_APPLY script to apply the trigger.

sqlplus <apps_user>/<apps_password> @XXX_CUST_X1
APPLSYS

sqlplus <apps_user>/<apps_password>
@$AD_TOP/patch/115/sql/AD_ZD_TABLE_APPLY.sql
XXX_CUST_F1

At this point the new column is populated. The final step of
updating an existing logical column is to maintain any
managed objects that may be referencing the original (now
out-of-date) column. There may be indexes or materialized
views that reference the physical table columns. If these
objects reference obsolete table columns, they need to be
updated to refer to the latest revised columns. This step can
be done automatically by Online Patching.

118|

Forward Cross-edition Trigger

To fix managed objects after revising an existing
logical column, call the AD_ZD.FINALIZE,
AD_ZD.CUTOVER and AD_ZD.CLEANUP procedures
manually in your development database.

These operations are normally done as part of the
Online Patching Cycle, but since your development
environment is not actually in an Online Patching
Cycle, you must call the procedures manually.

sqlplus <apps_user>/<apps_password>
exec ad_zd.finalize
exec ad_zd.cutover
exec ad_zd.cleanup
quit

119|

Forward Cross-edition Trigger
The FINALIZE procedure creates a revised version of the

index on TYPE. Since we are now storing the service type
information in the TYPE#1 column, the existing index
must be updated to use the new column. FINALIZE
creates the revised index under an alternate name, which
will be changed to the original name during the cutover
phase.

The CUTOVER procedure removes the "NOT NULL"
constraint on the old TYPE column, drops the old index,
and renames the revised index to the original name. In a
real Online Patch, the CUTOVER procedure also
promotes the Patch Edition to be the new Run Edition,
but when called from the Run Edition that action is
skipped. The table is now ready for use.

The CLEANUP procedure disables and removes the cross-
edition trigger.

120|

Forward Cross-edition Trigger

Extract the updated table definition from your
development database.

For all instances on R12.AD.C.Delta.7 and higher:

perl xdfgen.pl <apps_user>/<apps_password>
XYZ_USER_SERVICE

For single node database instances on R12.AD.C.Delta.6 and
lower:

perl xdfgen.pl <apps_user>/<apps_password>@<DB_SID>
XYZ_USER_SERVICE

For RAC instances on R12.AD.C.Delta.6 and lower:

perl xdfgen.pl
<apps_user>/<apps_password>@<DB_Instance_Name>
XYZ_USER_SERVICE

At last, you are ready to create the patch.

121|

Forward Cross-edition Trigger

Create the patch.

Patch Files:
fnd/patch/115/xdf/xxx_cust.xdf
fnd/patch/115/sql/XXX_CUST_X1.sql

Manual apply phase actions for the file system:

cp fnd/patch/115/sql/* $FND_TOP/patch/115/sql
cp fnd/patch/115/xdf/* $FND_TOP/patch/115/xdf

Manual apply actions for the database:

xdfcmp.pl <applsys_user>/<applsys_password>@$TWO_TASK
$FND_TOP/patch/115/xdf/xxx_cust.xdf
<apps_user>/<apps_password>
sqlplus <apps_user>/<apps_password>
@$FND_TOP/patch/115/sql/XXX_CUST_X1 APPLSYS
sqlplus <apps_user>/<apps_password>
@$AD_TOP/patch/115/sql/AD_ZD_TABLE_APPLY XXX_CUST_F1

122|

Forward Cross-edition Trigger

Test the patch.

When XDF applies the table update, the revised
column and index is added, and the EV will be
regenerated to use the new revised column.

After the FCET is created and applied the revised
column is populated with the new codes.

123|

Reverse Cross-edition Trigger

 Create a Reverse Cross-edition Trigger to
populate the original column.

 The reverse cross-edition trigger only fires when
the table contents is changed from the patch
edition (such as during seed data loading).

 The purpose of the of the Reverse Cross-edition
Trigger is to populate the old column in some way
that satisfies the old NOT NULL or UNIQUE
constraint.

 The following is an example of SQL script that
combines creation of both the FCET and RCET for a
revised unique indexed column.

124|

FCET & RCET Example
-- FCET Definition

create or replace trigger XXX_CUST_F1
before insert or update on &1..XXX_CUST
for each row forward crossedition
disable

begin
:new.service_type#1 := :new.service_type;

end;
/

-- RCET Definition
create or replace trigger XXX_CUST_R1

before insert or update on &1..XXX_CUST
for each row reverse crossedition
disable

begin
:new.service_type := substrb(:new.service_type#1, 1, 8);

end;
/

125|

Reverse Cross Edition Trigger

You may have noticed that the example reverse
cross-edition trigger logic may not satisfy the
uniqueness constraint of the old column for new
data that is longer than 8 bytes.

In cases where this is a concern, you can populate
the old column with values from a sequence
number, converted to an 8-byte string.

The reverse cross-edition trigger does not actually
need to populate meaningful data in the old
columns, it only needs ensure that database
constraints on the old column are satisfied when
rows are loaded in the patch edition.

126|

FCET & RCET Example

You can apply and test the FCET/RCET triggers in
a development database as follows:

sqlplus <apps_user>/<apps_password>
@XXX_CUST_X1 APPLSYS
sqlplus <apps_user>/<apps_password>
@$AD_TOP/patch/115/sql/AD_ZD_TABLE_APPL
Y XXX_CUST_F1
sqlplus <apps_user>/<apps_password>
@$AD_TOP/patch/115/sql/AD_ZD_TABLE_APPL
Y XXX_CUST_R1

127|

FCET & RCET Example
sqlplus <apps_user>/<apps_password>

exec ad_zd.finalize

-- test insert into table
insert into XXX_TYPES

(type, service_priority, home_page)
values ('TYPE', 0, 'TEST');

select * from applsys.xxx_types
where type#1 = 'TYPE';

rollback;

exec ad_zd.cutover
exec ad_zd.cleanup

Since the reverse cross-edition trigger is not applied to
existing rows of the table, It is recommended that you
make a test insert into the table in order to verify the
trigger logic.

128|

Poll Question

129|

Contact

Mike Swing

President

mswing@trutek.com

TruTek

www.trutrk.com

130|

Join our conversation with #EBSVC16

Thank you for attending the EBS

Answers Virtual Conference.

Please be sure to visit the exhibitor

showcase to meet with EBS

solution providers, and enter for a

chance to win giveaways!

