Classifying EEG spectral features that predict subsequent memory performance across multiple sessions
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7 young adults (2 male)
* Mean education = 14.7 yrs
* Mean age = 22.30 yrs
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BEHAVIORAL RESULTS

INTRODUCTION PARTICIPANTS

 Prediction of subsequent memory using pre-stimulus
electroencephalography (EEG) data has practical
implications in cognitive science and brain-computer-
interface (BCI) research.

 Prior research has demonstrated that it is possible to
use machine learning to classify pre-stimulus EEG
signals that predict whether a stimulus will be later
remembered or forgotten.

» Feature selection is often performed by identifying
features across frequency x time x location which

METHODS

/ Session 1 \
iemory

. |
! Retrieval |-
/ e e - \ /

Session 2

ISI: jittered
900-1100
msec

ISI: jittered
900-1100
msec

ISI: jittered
2000-2200
msec

ISI: jittered
2000-2200
msec

/
\

- O O O O S . Sy,
- S - S S S . .
- N S S . S
- e e - e e e o
- O S S S O . E—,
I S S S S S . -
- O S S S S S .y,
- e e e e s o =

correlate most labels, but this does not take into Memory Recognition
account variability between sessions.
(This approach resulted in only chance test accuracy Misses
on the current data set) 45% Session 1 Hit Rate
* Approach presented here attempts to select features Mean Hit Rate = 55.03%
holistically by including space and time features and SD = 13.97
identifying key frequency bands for training and
testing. / /
Research Question \\
Does classification of brain states that predict later Spectrogram
memory within a session generalize to a novel
dataset and predict memory performance in a - :
different session? / Feature space \ Kﬁain and test SVM\ / | \ / \ \ aees;snlilriltil;l; F={a7t$ 549,
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EEG METHODS

» 32-channel EEG recorded during encoding
Eye-blink artifacts corrected with ICA

Artifact rejection by automatic/manual inspection
Baselined -200 to Oms before tone onset
Re-referenced to average of L/R mastoid

Spectral Power Topoplot
(Mean Hit Power — Mean Miss Power)

Participant 1, Frequency band #1  The subject-specific models optimized for Session 1

were then tested on Session 2 datasets, yielding
greater-than-chance classification accuracy for 6-out-
[ participants with a mean classification accuracy of

CONCLUSIONS

MACHINE LEARNING CLASSIFICATION

« Classification via Support Vector Machine (SVM) 0.5 59% across all participants.
* Training via leave-1-out cross validation
10 3 » The feature selection approach presented yielded
FEATURE SPACE greater test classification accuracy performance than
.. . 05 the typical method of selecting top correlated
« Spectral decomposition via spectrogram: features.

» 42 frequency bands from 1-42 Hz
* 4 non-overlapping 500msec time windows .

(2 pre-stimulus, 2 post-stimulus)
-1100 to -600 ms -600 to -100 ms 100 to 600 ms 600 to 1100 ms

These results suggest that individualized, frequency-
based feature selection can provide useful input for
EEG classification model design that generalizes to
novel datasets (Session 2) and predicts memory
performance across time.

» 12 scalp regions (spatial groups of electrodes)

FEATURE SELECTION

Test Classification Accuracy on Session 2 Data
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