Classifying EEG spectral features that predict subsequent memory performance across multiple sessions

INTRODUCTION

- Prediction of subsequent memory using pre-stimulus electroencephalography (EEG) data has practical implications in cognitive science and brain-computerinterface (BCI) research.
- Prior research has demonstrated that it is possible to use machine learning to classify pre-stimulus EEG signals that predict whether a stimulus will be later remembered or forgotten.
- Feature selection is often performed by identifying features across frequency *x* time x location which correlate most labels, but this does not take into account variability between sessions. (This approach resulted in only chance test accuracy on the current data set)
- Approach presented here attempts to select features holistically by including space and time features and identifying key frequency bands for training and testing.

Research Question

Does classification of brain states that predict later memory within a session generalize to a novel dataset and predict memory performance in a different session?

EEG METHODS

- 32-channel EEG recorded during encoding
- Eye-blink artifacts corrected with ICA
- Artifact rejection by automatic/manual inspection
- Baselined -200 to 0ms before tone onset
- Re-referenced to average of L/R mastoid

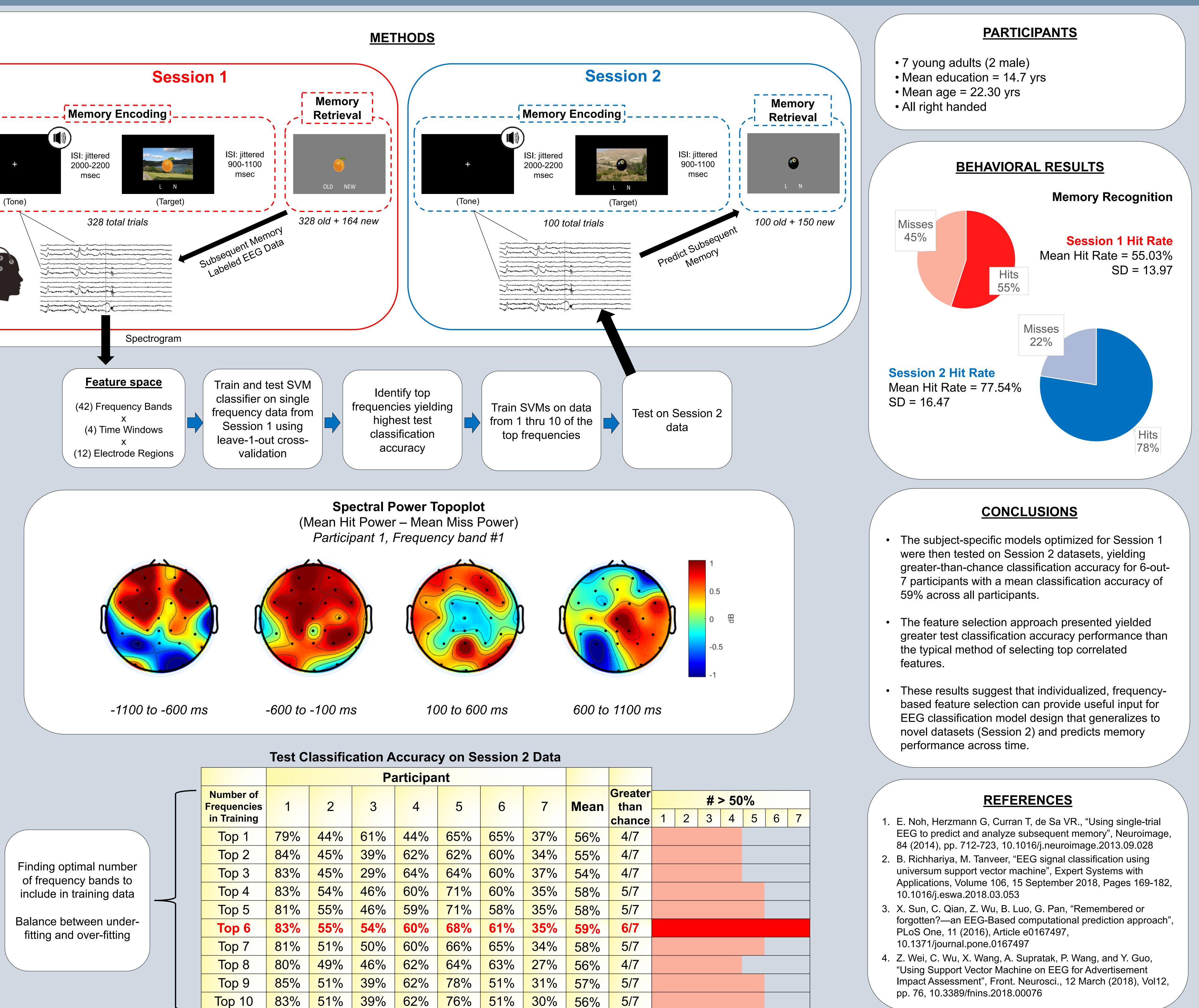
MACHINE LEARNING CLASSIFICATION

- Classification via Support Vector Machine (SVM)
- Training via leave-1-out cross validation

FEATURE SPACE

- Spectral decomposition via spectrogram:
- 42 frequency bands from 1-42 Hz
- 4 non-overlapping 500msec time windows
- (2 pre-stimulus, 2 post-stimulus)
- 12 scalp regions (spatial groups of electrodes)

FEATURE SELECTION


Session 1 Classification:

- For each participant, a series of classifiers are trained and tested on Session 1 data, each using the spectral power data of a specific frequency band
- Yields frequency bands rank ordered by test classification accuracy

Session 2 Classification:

- Optimal training set size determined by training classifiers on 1 thru 10 of top frequencies from Session 1
- Classifiers tested on Session 2 data

Overall method and model performance measured via mean test classification accuracy and number of participants yielding greater than chance

David DiStefano & Elizabeth Race Integrative Cognitive Neuroscience Lab, Department of Psychology, Tufts University

icipant													
4	5	6	7	Mean	Greater than	# > 50%							
					chance	1	2	3	4	5	6	7	
14%	<mark>65</mark> %	<mark>65</mark> %	<mark>37</mark> %	<mark>56</mark> %	4/7								
52%	<mark>62</mark> %	<u>60%</u>	<mark>34</mark> %	<mark>55</mark> %	4/7								
64%	<mark>64</mark> %	60%	<mark>37</mark> %	<mark>54</mark> %	4/7								
3 0%	<mark>71</mark> %	<u>60%</u>	<mark>35</mark> %	<mark>58</mark> %	5/7								
59%	<mark>71</mark> %	<mark>58</mark> %	<mark>35</mark> %	<mark>58</mark> %	5/7								
60%	68%	61%	35%	59%	6/7								
6 0%	<mark>66</mark> %	<mark>65</mark> %	<mark>34</mark> %	<mark>58</mark> %	5/7								
<mark>62%</mark>	<mark>64</mark> %	<mark>63</mark> %	<mark>27</mark> %	<mark>56</mark> %	4/7								
52%	<mark>78</mark> %	<mark>51</mark> %	<mark>31</mark> %	<mark>57</mark> %	5/7								
52%	<mark>76</mark> %	<mark>51</mark> %	<mark>30</mark> %	<mark>56</mark> %	5/7								

DR/PER Center for Applied Brain & Cognitive