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INTRODUCTION
• Prediction of subsequent memory using pre-stimulus 

electroencephalography (EEG) data has practical 
implications in cognitive science and brain-computer-
interface (BCI) research.

• Prior research has demonstrated that it is possible to 
use machine learning to classify pre-stimulus EEG 
signals that predict whether a stimulus will be later 
remembered or forgotten.

• Feature selection is often performed by identifying 
features across frequency x time x location which 
correlate most labels, but this does not take into 
account variability between sessions.
(This approach resulted in only chance test accuracy 
on the current data set)

• Approach presented here attempts to select features 
holistically by including space and time features and 
identifying key frequency bands for training and 
testing.

EEG METHODS

• 32-channel EEG recorded during encoding
• Eye-blink artifacts corrected with ICA
• Artifact rejection by automatic/manual inspection
• Baselined -200 to 0ms before tone onset
• Re-referenced to average of L/R mastoid

MACHINE LEARNING CLASSIFICATION

• Classification via Support Vector Machine (SVM)
• Training via leave-1-out cross validation

FEATURE SPACE

• Spectral decomposition via spectrogram:
• 42 frequency bands from 1-42 Hz
• 4 non-overlapping 500msec time windows

(2 pre-stimulus, 2 post-stimulus)
• 12 scalp regions (spatial groups of electrodes)

FEATURE SELECTION

Session 1 Classification:
• For each participant, a series of classifiers are 

trained and tested on Session 1 data, each using 
the spectral power data of a specific frequency 
band

• Yields frequency bands rank ordered by test 
classification accuracy

Session 2 Classification:
• Optimal training set size determined by training 

classifiers on 1 thru 10 of top frequencies from 
Session 1

• Classifiers tested on Session 2 data

Overall method and model performance measured via 
mean test classification accuracy and number of 

participants yielding greater than chance 

BEHAVIORAL RESULTS

Memory Recognition

Session 1 Hit Rate
Mean Hit Rate = 55.03%

SD = 13.97

Session 2 Hit Rate
Mean Hit Rate = 77.54%
SD = 16.47

Research Question
Does classification of brain states that predict later 

memory within a session generalize to a novel 
dataset and predict memory performance in a 

different session?

PARTICIPANTS

• 7 young adults (2 male)
• Mean education = 14.7 yrs
• Mean age = 22.30 yrs
• All right handed

CONCLUSIONS

• The subject-specific models optimized for Session 1 
were then tested on Session 2 datasets, yielding 
greater-than-chance classification accuracy for 6-out-
7 participants with a mean classification accuracy of 
59% across all participants.

• The feature selection approach presented yielded 
greater test classification accuracy performance than 
the typical method of selecting top correlated 
features.

• These results suggest that individualized, frequency-
based feature selection can provide useful input for 
EEG classification model design that generalizes to 
novel datasets (Session 2) and predicts memory 
performance across time.
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Participant
Number of 

Frequencies 
in Training

1 2 3 4 5 6 7 Mean
Greater 

than 
chance

Top 1 79% 44% 61% 44% 65% 65% 37% 56% 4/7
Top 2 84% 45% 39% 62% 62% 60% 34% 55% 4/7
Top 3 83% 45% 29% 64% 64% 60% 37% 54% 4/7
Top 4 83% 54% 46% 60% 71% 60% 35% 58% 5/7
Top 5 81% 55% 46% 59% 71% 58% 35% 58% 5/7
Top 6 83% 55% 54% 60% 68% 61% 35% 59% 6/7
Top 7 81% 51% 50% 60% 66% 65% 34% 58% 5/7
Top 8 80% 49% 46% 62% 64% 63% 27% 56% 4/7
Top 9 85% 51% 39% 62% 78% 51% 31% 57% 5/7
Top 10 83% 51% 39% 62% 76% 51% 30% 56% 5/7

Test Classification Accuracy on Session 2 Data

Test on Session 2 
data

Train and test SVM 
classifier on single 

frequency data from 
Session 1 using 

leave-1-out cross-
validation

Identify top 
frequencies yielding 

highest test 
classification 

accuracy

Train SVMs on data 
from 1 thru 10 of the 

top frequencies
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Participant 1, Frequency band #1
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# > 50%
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Finding optimal number 
of frequency bands to 
include in training data

Balance between under-
fitting and over-fitting


