
ABSTRACT:

A database is a collection of information organized to
be easily accessed, managed and updated. Databases
have evolved dramatically over time. We have moved
from scrolls and papyruses found in the Library of
Alexandria to virtual file cabinets in the digital realm.

When we have a database, we want all our data to be
safely stored and easily retrieved. The data should be
available using a systematic and repeatable method,
and the retrieval process should be as fast and as
reliable as possible to benefit our end users.

Underpinning and enabling this is the database
architecture. This consists of the data storage,
replication and, for high availability, the architecture
must include a failover architecture as well as some sort
of data redundancy. With these in place, the data is
safely stored and can be retrieved easily and quickly in
a systematic, repeatable fashion.

Which type of database architecture will enable your
organization to fully access, manage, and update
your data resources through MySQL? This whitepaper
discusses storage options; cluster solutions, including
Galera and MySQL Cluster; as well as redundancy,
speed, failover, and other parameters.

By Charleste King

Which Database
Structure is Ideal
for You?

MySQL
Architecture
Options:

MySQL Architecture Options:
Which Database Structure is Ideal for You?

content
MySQL Architecture Options: Which Database Structure is Ideal for You?

Database Architecture ..

Data Storage With MySQL ..

Comparing Database Storage Engines ...

MySQL Cluster ...

Galera Cluster ..

Data Replication Strategies ..

1. Master/Slave Replication ..

2. Master/Master Replication ...

Increasing Database Availability ..

Data Redundancy Configurations ..

What Architecture Should I Use? ...

More Information on MySQL Database Solutions ..

About Datavail ...

1

1

1

2

3

3

3

4

4

4

5

6

6

7

MySQL Architecture Options:
Which Database Structure Is
Ideal for You?

The open-source software, MySQL, is the dominant
platform for many enterprise databases. What are the
aspects and parameters of the database that allow each
of these key features to be enabled? What is the best
possible database structure available? We will discuss
each of these so you can evaluate and create a MySQL
database architecture that meets your organization's
unique needs.

Database Architecture

When we talk about data being "safely stored," this
means it is protected. It does not become corrupt, and
it is not changed without our instructions. The term
"protected" is very wide and is often vague. It can mean
ensuring that prying eyes can't see it. It can also mean
data is secure and cannot be changed readily. We want
our data to remain intact.

We also want to find and retrieve our data easily. We
should be able to cross-reference our data, but data must
retain its integrity. We must have a way to systematically
store and find our data in a predictable, replicable
fashion. That is the primary goal of database architecture,
regardless of the server or application being used. And it
starts with data storage.

Data Storage With MySQL

Data storage is a key aspect of any database
architecture. Each data storage method has its pros and
cons. In MySQL, the term "storage engines" is used.
MySQL uses two different formats: transactional, which
means the data can be rolled back when/if a transaction
fails, and non-transactional, in which the data is altered
as the statements.

Although there have been several different ways in
which databases traditionally store data -- within flat
files, in spreadsheets, or relational databases -- there
are many different options and, with those, different
concerns. Choices you make regarding data storage
will impact subsequent choices in the software used to
organize the data.

Today, we need to think about:

•	 Storage size

•	 Memory

•	 Indexes

•	 Redundancy

We need to look at each of these within the context of
the numerous different storage types available to MySQL
users. The most commonly used MySQL storage engines
are MyISAM, InnoDB, memory, NDB, CSV, and XtraDB.
Of these, XtraDB is commonly used with Percona and
with Galera. MyISAM, InnoDB, Memory, NDB, and CSV
are used with MySQL.

There are many other storage options available. We
aren't going to address all of these. Some -- like
Blackhole -- may be very handy for a specific one-off task.
Blackhole is useful, for example, for upgrading from a
MySQL 5.0 instance to 5.6. If you want to use replication
for minimal downtime, the Blackhole engine enables
you to write only the binary logs and complete the data
chain replication. This means not having to pay for all the
storage for 5.1 or 5.5 instances. It enables you to have
and use replication affordably. That's just one example of
a specialized solution. Let's look at some of the MySQL
storage options briefly.

MyISAM is a staple storage engine for MySQL. It is a
non-transactional or atomic storage engine. When a
statement is submitted, it is immediately processed,
making this option very fast for data retrieval.

Page 1	 MySQL Architecture Options: Which Database Structure Is Ideal for You? | © 2016 Datavail, Inc. All rights reserved.

There are several caveats associated with its use. The most
onerous one is, the problems that occur with row locking
versus table locking. Because table locking is initiated
by MyISAM when someone is backing up, inserting,
updating, or deleting data within a table, if another user
needs to do something to that table, they must wait their
turn. In a very high-transaction environment MyISAM
becomes a bottleneck.

Additionally, bottlenecks occur when backups are
needed. Given the number of other storage engine
options available today, the primary reason you might
wish to use MyISAM is for delayed inserts -- something
no other storage engine provides.

At Datavail, we often recommend InnoDB, the storage
engine that now serves as the default storage engine for
MySQL. It has the benefit of being both transactional
and ACID-compliant. It uses row-level locking. In versions
prior to 5.7, it uses gap-locking, which allows users to
make a hot backup without losing state.

InnoDB has multi-version concurrency control, which
means that when it's modifying a row and another
function is coming in, it is able to mark the old row and
archive it. It also writes and removes the old data. This
eliminates any "dirty reads" from occurring. The primary
caveat: InnoDB doesn't work well for fast access.

CSV is a handy storage engine to use. It is basically a text
file with Comma-Separated Values (CSV). This classic data
storage format is always available. CSV data files can be
opened in Excel or by a text editor. You can write a little
MySQL script that will be easily able to access the data
using no additional libraries. This can be a very handy
way to allow programs to access your data if you don't
want to use a specific relational database management
system or application.

Another option is to use the memory storage engine,
which is very, very fast because the data and indexes are
stored in memory. The problem is, the data is not stored
anywhere physically. If there is a power loss -- whether from
a restart or catastrophic failure -- the data is not retained.
This option could be handy for holding session data, as
having data in memory makes it readily accessible.

NDB is a storage engine used exclusively with MySQL
Cluster. It stores data similarly to the way in which data
nodes do. Here, the data nodes are managed by the
NDB administrative node.

Comparing Database
Storage Engines

When we compare these different storage engines, we
want to look at several different metrics. In particular, we
want to compare the maximum storage limit, transaction
types, foreign keys, multi-version concurrency control,
data compression, scalability, whether the engine is
ACID-compliant, and allows parallel writes. You can see
some of these in the chart provided.

You will note that only three database engines are
compared in the accompanying chart. We did not
compare CSV or memory because these are not typically
used. XtraDB has its own parameters, the specifics of
which were not available from Percona.

In looking at the storage limit, for example, InnoDB has a
maximum of 48 terabytes; NDB is limited to a maximum
of 3 TB; and MyISAM is limited by the disk and file size.
Additionally, InnoDB allows data compression while
neither NDB nor MyISAM do.

You will need to determine those metrics or features
that are most important to your organization and weigh
those carefully before making a storage engine selection.
Having ACID-compliant data storage, for example, may
be a priority. This will narrow your possible choices to
InnoDB or NDB. Issues such as the need to comply with
federal or industry data retention policies may also guide
your selection of a database storage solution.

MySQL Architecture Options: Which Database Structure Is Ideal for You?	 Page 2

Storage Engine Innodb NDB MyISAM

Max Storage Limit 48 TB 3 TB Disk and filesize
limited

Transactional Types All READ_COMMITTED Atomic

Foreign Keys Yes 7.3+ Ignored

MVCC Yes No No

Data Compression Yes No No

Scalability
Application-level
sharding Yes Application-level

sharding

ACID Compliant Yes Yes No

Parallel Writes No Yes No

MySQL Cluster

There are two different cluster solutions available to
MySQL users: Galera and MySQL Cluster. Both have
some very nice features, but they also have issues.

MySQL Cluster offers synchronous replication and is
highly scalable. It operates in real-time and is ACID-
compliant. It claims to offer 99.999% availability. It has a
distributed, multi-master architecture with no single point
of failure. It is also able to scale horizontally, and it has
both SQL and NoSQL interfaces. MySQL Cluster uses the
NDB storage engine.

Having a multi-master architecture with no single point
of failure allows users to structure the cluster with a
single data node, one management node, and one API
node from which MySQL is run. Ideally, you would have
at least two, if not three, data nodes, as well as multiple
management nodes and as many of the API nodes as you
would like.

Typically, the data node would be installed with an
API node on each instance. Users typically have one
management node, but that's risky. That would be
your single point of failure. You will need at least two
management nodes if you wanted to have no single point
of failure.

What hardware does MySQL Cluster require? If you
want to have two data nodes and two management
nodes, four servers will be needed to implement this.
Some database professionals prefer to have multiple
redundancy, which would require at least five servers. If
you want to keep your API nodes separate from your data
and your management nodes, each API node will require
an additional server.

The first thing to think about with MySQL Cluster is
latency. When a transaction is submitted, the cluster
needs to have confirmed that all the components within
the system "know" the transaction is completed. The lag
time associated with this verification and confirmation
creates some inherent latency.

At Datavail, we have seen latency issues arise, some
of which have resulted in a cascade of increasingly
problematic issues throughout the system. In one
situation, I was examining a bottleneck and needed to
look in the error log. The process of looking at the nodes
resulted in a series of events causing corruption in both
nodes as well as an unsuccessful repair requiring the
restoration of data from backup files.

Galera Cluster

Galera Cluster is a second option. It offers synchronous
replication, has an active-active multi-master topology,
and reads and writes to any cluster node. Because it
has automatic membership control, any failed nodes
are automatically dropped from the cluster. It also offers
automatic node joining and true parallel replication
on the row level. Among its many other attributes, it
has a native MySQL look and feel, and you can use
Galera Cluster with either the InnoDB or XtraDB storage
engines.

How does this differ from MySQL Cluster? Galera Cluster
uses no management node. In a cluster, each of the
different nodes communicates with one another. This can
result in latency, particularly if you have many nodes in
your system and if you are sending a large transaction.

That entire transaction has to be completed on every
single node, and each of these nodes must confirm that
the transaction has been completed before the data is
considered committed. These attributes make Galera
Cluster very transactional and ACID-compliant, which is
great, save for the inherent latency.

You can also use it, for example, to write to a single node
and propagate that data to other nodes as a backup
strategy. Or you could do all your writes to one node
and do all your reads to another node. You can, in other
words, structure the cluster to operate in a way that best
meets your organization's needs.

Data Replication Strategies

Another aspect of your data architecture is replication.
The standard types of replication strategies are:

•	 Master/Slave (or Multi-Slave)

•	 Master/Master

•	 Ring Replication

Ring replication is a complicated structure. It does
exist as an option for replication; however, because of
all the inherent problems associated with its ongoing
use -- especially when maintenance or upgrades are
needed -- Datavail recommends using one of the other
replication methods.

Page 3	 MySQL Architecture Options: Which Database Structure Is Ideal for You? | © 2016 Datavail, Inc. All rights reserved.

1. Master/Slave Replication

Master/Slave is perhaps the most common means of
ensuring redundancy. Within Master/Slave, the readability
of the slave has no impact on the master and backups
can also be made without any effect on the master.
Downtime can be averted when the slave is taken offline
for maintenance, and the slave can be easily re-synced.

That it is an asynchronous type of replication becomes
a sticking point for some people, but there is neither
any automatic failover in a Master/Slave environment,
nor is this truly possible in any type of replication. There
is always some downtime and possible data loss if the
master fails.

The Master/Slave architecture is very straightforward.
You can have a single master database and one or more
copies or "slave" databases. You can choose the number
of slaves based on factors such as your need to do read
write splits. Ideally, you want to have your replication so
that your slave is not lagging very far behind the master.

The greatest problem that occurs from slave lag is when
you are first starting the system. If you have your slave,
and if you can keep your binary logs, then you actually
have all of your data after it was written. This is a reliable
way to ensure you have no data loss.

2. Master/Master Replication

Master/Master is a little different. Each master serves as a
master to the other master. In other words, A is a master
of B; B is a master of A. You can have additional slaves
off of either one of those masters. The writes can be
distributed and split as you wish using a load balancer or
a tool such as MMM or HAProxy. Using a load balancer
can help keep the system running automatically in the
event of failover compared to the steps needed to be
instigated by a system administrator in a Master/Slave
structure to maintain a state.

The caveat associated with using Master/Master is that
it requires a stepped primary key for completing those
automatic increments. You can institute multi-master or
ring replication, but you will need to have the correct
offsets for those and you will need more servers to
execute this type of architecture. It is asynchronous and
more complex than a Master/Slave to deploy. Once this
replication structure is active and working, it can be a
simple, good option.

Increasing Database Availability

To ensure your system has high availability, you need
to be certain the system has failover ability. Data
redundancy is also important in this context as having
data redundancy prevents data loss. For failover to be
successful, the system needs to be back up and running
as quickly as possible with little to no interruption.

Different architectures have different requirements for
failover to be effective. Here, we will look at standalone
instances as well as Master/Slave, Master/Master, MySQL
Cluster, and Galera Cluster.

In a standalone data architecture, a full, consistent
backup is required; for failover, you need binary logs for
point-in-time recovery from your last backup. Although
there is no slave component to this architecture, you
need binary logs to record transactions.

Restoration is going to be time-consuming, particularly
if a large dataset is involved. You must have sufficient
hardware available for restoration. If there is no binary
log, there is a high probability of data loss. Even with a
binary log, there remains a good probability of some data
loss. In either event, the downtime for your organization
could be considerable.

With a Master/Slave configuration, a hot standby is used,
which means there's no immediate restore required.
There is, however, the possibility for data loss if the slave
is not in sync with the master. You also need to have
some means for promoting the slave to a master, such as
a load balancer as previously mentioned.

There is a caveat to the use of Master/Slave. You have to
re-synch both the newly promoted master and the slave.

MySQL Architecture Options: Which Database Structure Is Ideal for You?	 Page 4

Any issues that occur around the promotion -- which
could be an application connection change or a
change of IP address -- must be resolved to ensure
the application continues working properly after these
changes occur.

The Master/Master configuration also uses a hot
standby. No immediate restore is required nor is
promotion needed. As with Master/Slave, some kind
of proxy load balancer or an IP change will be needed
for the changes to be effected properly. The server that
is down will need to be fixed as quickly as possible to
maintain redundancy and keep all the tools associated
with the database in place.

MySQL Cluster offers an automatic internal failover.
Replicants are manual failovers. The nature of the MySQL
Cluster means that -- although there is a management
node, multiple data nodes and multiple API nodes -- a
single point of failure exists: the management node.

Galera Cluster, as discussed previously, has no
management node. Failover is automatic, accomplished
internally. Replicants also have a manual failover. If the
application is going to a particular IP address in lieu of
a pool, then a floating IP or a manual failover will be
required for an application.

Many people simply like to point their applications to
a single node. If using a load balancer or a virtual or
floating IP address, that application can be moved to a
different server with little to no problem.

Data Redundancy Configurations

Let's look at how data redundancy works with each
architecture type. Redundancy must be properly
executed so you or another database administrator in
the organization can restore data in the event of some
type of failure.

In a standalone database architecture, there is no real
data redundancy. Any existing redundancy depends
on any backups and/or binary logs that exist. With this
approach, there is a very high probability of data loss
and database failure. In the event of any type of failure,
the entire system would have to be restored. Hopefully,
you have those binary log shadows somewhere so that if
there's a catastrophic failure, you can at least restore the
data to that point in time.

Within a master-slave database architecture, the slave is a
hot replica of the master.

This means it offers a hot backup and is on standby.
There remains a possibility of data loss if there is slave
lag. There can also be binary lag corruption, which can
cause data drift or loss.

If any of these occur, you cannot replicate the corrupted
data. Improper binary logging and the use of triggers,
which may create issues when there are unsafe replication
statements used, can also cause data drift.

In the master-master architecture, the slave is a hot
replica of the master. You can have data redundancy
issues similar to those you experience with the master-
slave database architecture as they are actually both
masters and both slaves.
Data redundancy within MySQL Cluster relies on
mirrored data. There are several types of potential
challenges. Individual data nodes, for example, can fail
when transactions are aborted. You must be aware that
transactional applications are expected to handle any
transaction failures.

How a specific application might protect your data in the
event of failure differs for each of these. If, for example,
you want to put triggers in the database and you're using
some kind master-slave or master-master redundancy, you
must be certain your application is using replication-safe
statements in MySQL Cluster.

The application needs to be able to handle those
transactions that have failed. We have seen many
instances of data loss when adding nodes, for example.

Galera Cluster works by not considering a transaction
complete until all of its members agree. Large
transactions are not advised. If you're sending something
very large off to four or more nodes, this would be
classified as a large transaction.

With Galera Cluster, you must wait until all the members
agree before the transaction is complete. Huge latency
can occur with large transactions, which is why large
transactions are not advised. Replication may prove
challenging if you are not aware of how transactions work.

Page 5	 MySQL Architecture Options: Which Database Structure Is Ideal for You? | © 2016 Datavail, Inc. All rights reserved.

What Architecture Should I Use?

Now that we've reviewed a few of the benefits and
caveats of these types of database architectures, what is
the best database architecture available to optimize your
use of MySQL? Good question; start by thinking of your
business requirements.

You will need to evaluate your specific database
architecture needs -- the required redundancy, speed,
failover, and other parameters -- against issues such
as costs and available infrastructure. You will need to
answer questions such as, "Where is MySQL going to
be hosted?" "Will I have my own servers?" "Will it be
hosted in the cloud or via a hosting service?" "Will I
need more hardware?"

You will also be selecting the best possible architecture
based on your own expertise. The easiest architecture
to implement will be some variant of the master-slave
architecture. The safest architecture to use is probably
Galera Cluster, but you will need to weigh its use against
performance. Your choice depends on what you need
and want from a database. MySQL Cluster could be a
solution for you, but so could Galera.

It is best not to use a standalone server. Having a single
database server is a very, very high-risk strategy. Datavail
has seen numerous problems resulting from the failure
of a standalone server. A catastrophic failure makes it
challenging, if not impossible, to recover data. You always
need redundant architecture that allows recovery from
any disaster. It is not a matter of if a disaster will occur,
but when. Better to be prepared!

Think about what your organization's needs are. Think
about the different approaches and which of these might
be the best option for your database environment.

There is no single perfect solution for every organization
or database.

There are several flavors of MySQL out there and they all
work very well. Each has its pros and cons, endorsements
and caveats associated with it. Ultimately, you will need
to select an architecture that will enable your organization
to fully access, manage, and update your data resources
through MySQL.

More Information on MySQL
Database Solutions

There are a host of resources available for MySQL users. If
you are still uncertain about the best MySQL architecture
options for your organization, Datavail can help you
evaluate your current database environment against your
company's business priorities and future goals.

The Datavail website provides many resources for those
new to MySQL as well as long-time users. We have
several options for MySQL and primary benefits related
to using MySQL, including how to optimize MySQL for
high availability, how to configure it for scalability, and
how to use MySQL performance analysis tools.

With nearly 500 database administrators worldwide,
Datavail is the largest database services provider in
North America. With 24x7 managed database services,
including database design, architecture and staffing,
Datavail can support your organization as it works with
MySQL, regardless of the build you ultimately select.
Contact Datavail to discuss a custom MySQL solution
designed for your enterprise.

MySQL Architecture Options: Which Database Structure Is Ideal for You?	 Page 6

Biography

Charleste King
Lead MySQL DBA for Datavail

Charleste has more than 15 years of experience in the IT industry in a myriad of areas from
software development to data analysis, architecture, and administration. She has worked
supporting organizations from the very small to enterprise level in aerospace, agriculture,
medicine, education, and other industries. She has developed solutions to unique problems
for clients ranging from multi-level upgrades with minimal downtime, compliance conversions,
documentation, monitoring, alerting, stabilization, trending, and forecasting problem areas, as
well as tuning and performance monitoring.

About Datavail

Datavail Corporation is the largest provider of remote database administration (DBA) services in North America,
offering database design and architecture, administration and 24x7 support. The company specializes in Oracle, Oracle
E-Business Suite, Microsoft SQL Server, MySQL, MongoDB, DB2 and SharePoint, and provides flexible on-site/off-site,
onshore/offshore service delivery options to meet each customer’s unique business needs.

Contact Us

General Inquiries:
877-722-8247
Fax Number: 303-469-2399
Email: info@datavail.com

Corporate Headquarters:
Datavail Corporation
11800 Ridge Parkway
Suite 125
Broomfield, CO 80021

Database Operations Control Center:
Datavail Infotech Pvt. Ltd
3rd Floor, Unit No. B-3
Ashar IT Park, Road No. 16Z
Wagale Estate
Thane (West), Thane 400604
Direct Telephone Number: 022-61517000

Bangalore Office
Datavail Infotech Pvt. Ltd
Concept Business Park
#319/9, 1st floor, Block A
Hosur Main Road
Bommanahalli, Bangalore 560100

Page 7	 MySQL Architecture Options: Which Database Structure Is Ideal for You? | © 2016 Datavail, Inc. All rights reserved.

www.datavail.com | 877.634.9222

