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1 Introduction

Event related fMRI experimental designs have become increasingly popular in the recent
years (Liu, Bengson, Huang, Mangun, and Ding (2016); Wildegger, van Ede, Woolrich,
Gillebert, and Nobre (2017) to measure the BOLD signal for visualizing human brain ac-
tivity. The BOLD signal being slow and sluggish present significant issues in design and
analysis of experiments. The challenge is to maximize the statistical efficiency per se to de-
tect and estimate a signal. It is achieved by carefully choosing critical factors of the exper-
imental design subject to constraints. A substantial improvement in efficiency is achieved
by randomizing the order and timing of events in a design. This study focuses on a particu-
lar type of design where randomization cannot be employed, namely the alternating event
related design which is typically used in an attention cueing experiment where events oc-
cur in a fixed and defined sequence like a trial by trial cue- target paradigm (Hopfinger,
Buonocore, and Mangun (2000)). We used a python package - fmrisim (Ellis, Baldassano,
Schapiro, Cai, and Cohen (2020)) to investigate this optimization challenge and how crit-
ical factors like Stimulus Onset Asynchrony (SOA), frequency and semi-null trials affect
the efficiency of an alternating design. The seamless simulation power of fmrisim to gen-
erate standardized, realistic simulation of fMRI data is used to understand how the vary-
ing parameters can be optimized to minimize the estimation of overlapping of events in
alternating event related (AEr) design sequences.

The goal in AEr fMRI experiments is often one of the two: detection or estimation
of the signal. Detection represents the ability to detect the difference in brain activation
between different conditions or groups, for instance, detecting an activation for cue or
target in contrast to the baseline or another condition. Estimation on the other hand is
how accurate the shape of the evoked response is (the haemodynamic response function,
HRF). We show that these two goals are opposite to each other and an increase in one of
them inevitably leads to a decrease in the other one.
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2 Methodology

We assumed the general linear model as in Equation 1 as the underlying model for the
neural mechanisms as the signal measured with fMRI is related to the neural signal via a
convolution with a haemodynamic response function(HRF).

Y = Xβ + ε, ε N(0, σ) (1)

where Y is the N x 1 voxel wise BOLD time series, X is the N x k design matrix (for
k events) which represents the expected response, β is the response amplitude for each
condition inX and ε is the normally distributed error term N(0, σ).

Y , the time course of voxel wise BOLD response is simulated using fmrisim. Y is the
combination of the evoked signal activity along with noise. Fmrisim can extract noise pa-
rameters directly from an fMRI dataset. The noise generated by fmrisim comprises of mul-
tiple components: drift and system noise related to the machine, auto regressive/moving
average(ARMA), physiological and task noise related to the brain. In our study, we used
the publicly available dataset (Bejjanki, Da Silveira, Cohen, and Turk-Browne (2017)) to
estimate the noise parameters.

The efficiency of estimation is inversely related to the variance of the parameter esti-
mates. Assuming independent errors, the unbiased estimate of the parameters is given by
the least squares estimation, β̂ = (X′X)−1X′Y . Since fMRI noise shows evidence of sig-
nificant temporal autocorrelation, the errors in Equation 1 are dependent and correlated.
So we used a prewhitening method so that the parameter estimate changes to,

β̂ = ((KX)′(KX)−1)(KX)′KY, (2)

where K is a decorrelating matrix such that KVK′ is the identity matrix and V is the
correlation matrix of errors (Wager and Nichols (2003); Kao, Mandal, Lazar, and Stufken
(2009)). We have the variance - covariance matrix of the parameter estimate as,

cov(Cβ̂) = σ2(Z′Z)−1Z′KVK′Z(Z′Z)−1 (3)

whereZ = KX , the whitened designed matrix (Graybill (1976)). LetC be the contrast
matrix of interest, the parameter estimate for the contrast changes to Cβ̂.

Now after prewhitening, assuming unit variance (σ2 = 1), and from the property of
Moore–Penrose inverse (A− = (A′A)−1A′), equation 3 reduces to

cov(β̂) = CZ−KVK′(Z−)′C′ (4)

The less the variance of the parameter estimates, the more optimized the experimental
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Table 1: Event Transition Matrix

Event C T Example
C 0.5 0.5

CTCTCTCTCT....
T 0.5 0.5

design is. Hence, equation 5 defines the efficiency of a design.

ξ =
1

trace{cov(Cβ̂)}
(5)

ξ is the detection power (ξd) if X is a convolved design matrix.
ξ is the estimation efficiency (ξe) if X is a finite impulse response(FIR) matrix of the HRF.
In order to ensure compatibility and comparibility across the measures of ξd and ξe, they
are standardized as follows,

ξ∗i =
ξi

max(ξi)
, i = d, e (6)

3 Simulations

In alternate event related fMRI designs such as an attention cueing experimental design,
the event of maximum interest is the cue and the post- cue anticipatory period (Liu et
al. (2016)). So our simulations are based on detecting the cue and estimating the shape
of evoked response to the cue. For simplicity, the simulations have only two events - a
cue (C) followed by a target (T). Table 1 shows the event transition matrix for the designs
simulated. A contrast matrix C = [ 1 , 0 ] was used to assess the efficiency of detecting the
cue with respect to the average baseline (ξd) and estimating the HRF (ξe). The canonical
haemodynamic response function was used in all the simulations.

3.1 Simulation I

This simulation used the event transition matrix shown in Table 1 to generate the event
trains. Each trial consists of a cue followed by a target. Here we demonstrate an exhaustive
search over Stimulus Onset Asynchrony (SOA) and jitter and its effect on ξ. The efficiency
of 20 x 20 = 400 design sequences was estimated as a function of lower and upper bounds of
SOA. The SOA was jittered uniformly between the lower and upper bound of the SOA for
that particular design sequence. Both the bounds ranged from 1 to 20s with an increment
of 1. The entire simulation was iterated 100 times and the their mean efficiency was used
as the population reference for each combination of bounds of SOA. The TR was 2s with
294 acquisitions, which makes every time series of an experimental design to be of 588s.
The duration of HDRs simulated for each design sequence was 30s long. These acquisition
and modelling parameters were used in Simulation II as well.
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3.2 Simulation II

Previous studies have suggested that inclusion of null events in the design sequence fa-
cilitate the efficiency of a design sequence (Josephs and Henson (1999)). This simulation
investigates this postulation. ξ was estimated as a function of proportion of null events
in a design sequence. Since we are primarily focusing on optimizing the efficiency of cue
events, we set targets as null i.e. in some trials the cue will not be followed by a target,
we name these ’semi null trials’. The proportion is varied from 0% semi - null trials to
50% semi - null trials. For this simulation, the lower bound of SOA was fixed at 1s while
varying the upper bound from 1 to 20 s with an increment of 2.

Figure 1: Simulation I; Standardized (a) Detection power ξd and (b) HRF Estimation Effi-
ciency ξe as a function of lower and upper bounds of SOA.

4 Results and Discussion

The heat-maps in Fig. 1(a) and Fig. 1(b) generated from Simulation I show ξd and ξe
respectively as a function of the lower and upper bounds of jittered SOA. The results repli-
cate the findings of (Josephs and Henson (1999)). The results of Fig. 1(a) reflect that an
SOA jittered uniformly between 5-9s achieves maximum ξe for cues. This gives a mean
SOA of 7s, thus giving an average time of 14s between two cues.

On the other hand, Fig. 1(b) suggest that the maximum ξe can be obtained when the
bounds of jitter for SOA is maximum. It is evident that the design for statistically efficient
detection is not the best one for efficiently estimation of the signal. The ability of fmrisim
to generate non- linear patterns of saturation in the signal helped in revealing how ξd falls
off dramatically at shorter SOAs when it becomes difficult to contrast the signal evoked
due to cues with respect to the saturated baseline. These results are based on detecting dif-
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ferences in brain response to one event with respect to the baseline. If the goal is to detect
other contrasts, a different efficiency heat-map would be expected.

The results obtained from Simulation II are presented in Fig. 2 and Fig. 3. Based on
these results, the inclusion of null targets increase detection power (ξd) of cues at shorter
SOAs and is directly related to its proportion. It should be noted that as the SOA is in-
creased, different proportions of semi null trials result in very similar efficiency measures
converging into one another. In other words, semi null trials do not aid the detection at
longer SOAs. If null events are treated as a third event type when no stimulus occurs, it
becomes easier to detect the contrast [ 1, 0 , 0 ] thus improving ξd at short SOAs. In other
words, it helps in accounting for the unexplained variance generated from overlapping of
neighbouring events at shorter SOAs.

Fig. 3 shows that the HRF estimation efficiency (ξe) is positively related to the propor-
tion of semi null trials in a design. This is because, null events (no stimulus occurence)
effectively jitter and increase the intervals thus minimizing the overlap between two adja-
cent event responses.

Figure 2: Simulation II; Detection power ( ξd) as a function of semi - null trial proportions
and varying SOA.
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Figure 3: Simulation II; HRF Estimation Efficiency ( ξe) as a function of semi - null trial
proportions and varying SOA.

5 Conclusion

In this study we used the simulation power of fmrisim to generate realistic fMRI signals
to understand how different factors of an event related fMRI design sequence can be opti-
mized in order to achieve maximum statistical efficiency for a study. The simulation results
demonstrate how it is difficult to simultaneously optimize the detection power and HRF
estimation efficiency in a event related design paradigm per se alternating event related
designs. The results also presented how inclusion of null events in a sequence can increase
the detection power at short SOAs and increase the estimation efficiency.
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