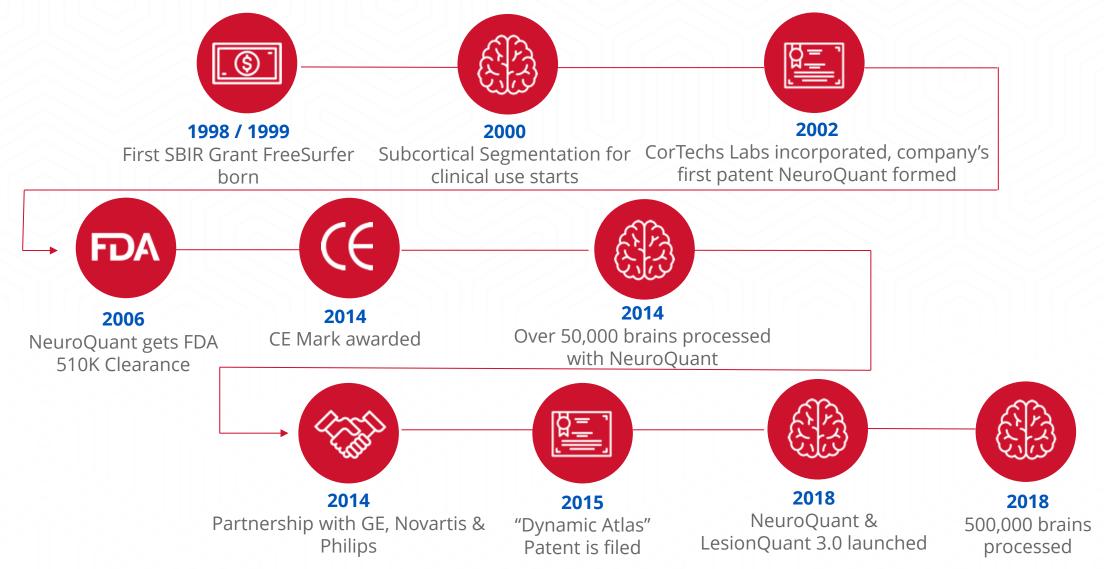


Why Use CorTechs Labs Products?


FIRST FDA CLEARED SOFTWARE FOR VOLUMETRIC MRI PROCESSING

Recognized Industry leader with over 10 years of trusted, accurate and proven automated brain image analysis

- Ready for clinical use in the USA, Canada, Europe, Australia, South Korea, and Brazil
- Used in over 800 clinical institutions worldwide
- Over 500,000 brains processed in research and clinically

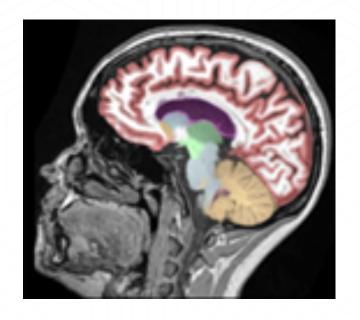
- Consistent segmentation for ages 3 to 100
- Trusted and verified by leading hospitals, universities, radiology centers, and Department of Defense
- 6 Compatible with leading MRI manufacturers

Key Milestones

Proven and Trusted

Used by the world's leading institutions

Used in over 800 clinical institutions in 35 countries worldwide


What is NeuroQuant?

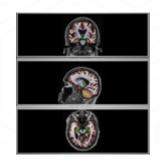
FIRST FDA CLEARED SOFTWARE FOR VOLUMETRIC MRI PROCESSING

Provides Automatic Image Segmentation from Magnetic Resonance Imaging (3D T1 MRI)

- 1 Registers Image to Dynamic Atlas
- Identifies and LabelsAnatomical Structures
- Quantifies the Volumes of Brain Structures
- Compares them to a Unique Normative Database for ages 3-100

NeuroQuant® - Atrophy, Quantified.

Fast, accurate & proven automated brain image analysis.


Comprehensive Volumetric Reports

Custom Volumetric Reports

Color Coded Brain Segmentation

Exportable CSV File with Raw Data

Six standard reports provide supplemental volumetric data in the assessment of neurological diseases

An alternative to standard NeuroQuant Reports, users can create custom volumetric reports relevant to clinical needs

A color overlay of the 3D MR images enabling closer inspection on a PACS or other DICOM viewer

CSV File with extensive data for research needs

NeuroQuant in Clinical Practice

RECOGNIZED BIOMARKER

Quantitative volumetric imaging is used to aid the evaluation of neurodegeneration

Provides supportive evidence for detecting tissue damage and pathology

OBJECTIVE MEASUREMENT

Measuring brain atrophy allows physicians to better evaluate patient cognitive complaints

ADDITIONAL DATA

This helps the physician assess overall clinical impression

Triggers additional workup for curable conditions when data are not suggestive of neurodegeneration

Accurate and early diagnosis guides clinical decisions

Effective education and management for the patient, caregiver, and family

Source: McEvoy, L.K. & Brewer, J.B. (2012). Biomarkers for the clinical evaluation of the cognitively impaired elderly: amyloid is not enough. Imag. Med, 4(3), 14.

Benefits of NeuroQuant

SAVES TIME

Increase productivity with automated quantification of brain MRIs in minutes with no user intervention.

IMPROVE ACCURACY

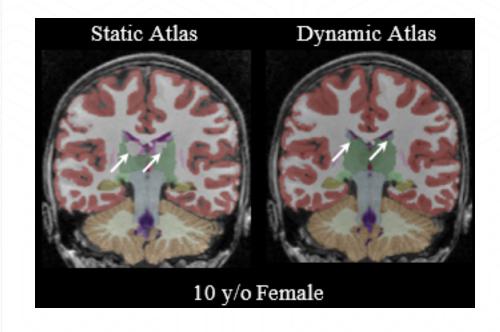
Automatic comparison to normative database reveals brain structure volumes divergent from the normal population. Ages 3-100.

MINIMIZE SUBJECTIVITY

Removes variability inherent in manual quantification methods.

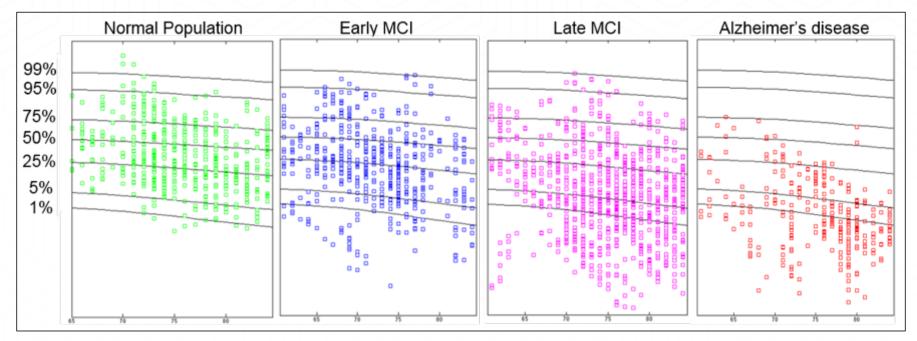
SAVE MONEY AND REDUCE COSTS

Reduce radiologist workload by automating the segmentation and volumetrics.

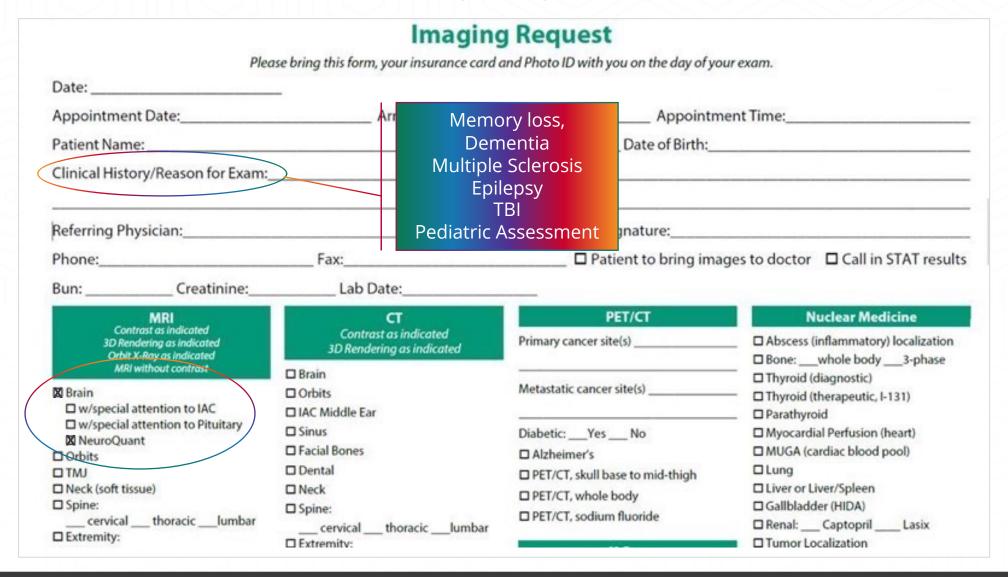

OVER 500,000 NEUROQUANT REPORTS HAVE BEEN GENERATED FROM MORE THAN 800 NATIONAL AND INTERNATIONAL INSTITUTIONS.

Unprecedented Accuracy for Ages 3 -100

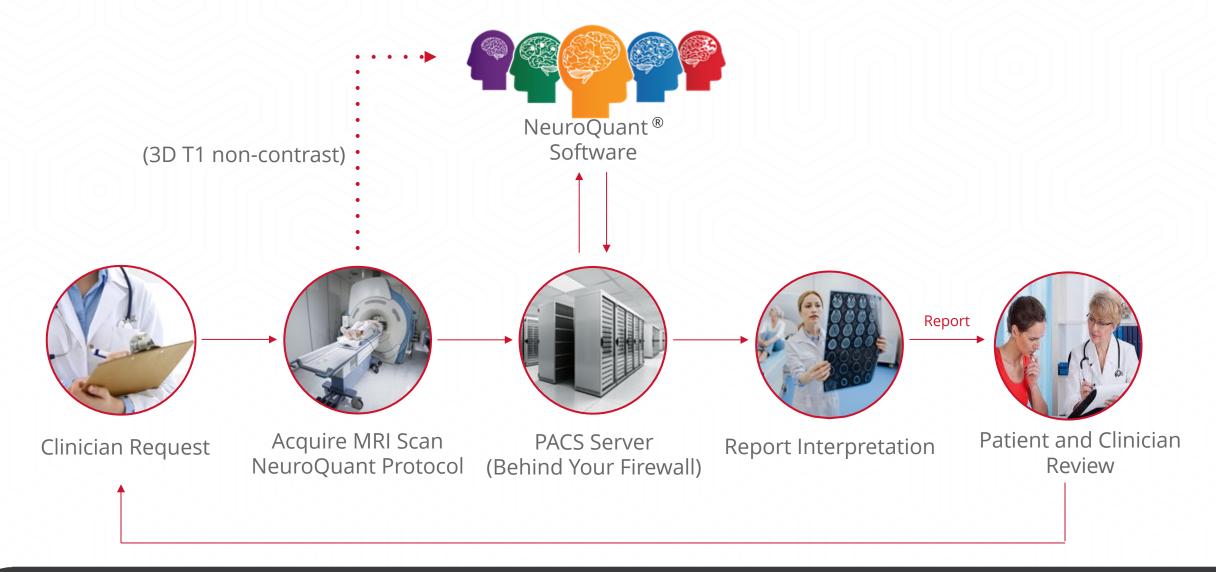
Dynamic Atlas™- Personalized segmentation driven by advanced precision technology


- Personalized atlas of each patient's brain versus static atlas
- Accurate and consistent brain segmentation in all subjects, independent of age and sex
- Highly reproducible and robust quantitative volume assessment of brain regions
- Longitudinal evaluation of patient data without discontinuity
- Greater scan-to-scan precision for longitudinal follow-up

NeuroQuant Normative Database


Patient brain volume results compared with thousands of healthy cohorts based on age and sex

- Continuous normative values from 3 to 100 years
- Verified and validated for over 10 years
- Used with more than a hundred thousand clinical cases



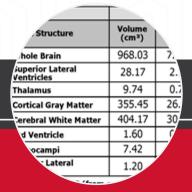
Sample Order from Referring Physician

Integrates Within Existing Workflow

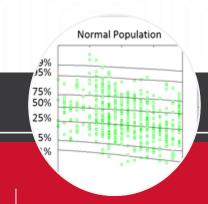
How NeuroQuant Works

3D T1 MR images are uploaded to software for processing

Static Atlas


Dynamic Atlas

10 y/o Female


Images registered to Dynamic Atlas™

Brain structures identified and labeled

Volumes of brain structures are measured

Volumes compared to healthy normative reference data

Reports and segmented images returned to PACS

System Options

Secure cloud-based system

- Log into the system anytime, virtually anywhere
- Two options are available to upload MRI series:
 - 1. Auto routed through CTXNode
 - 2. Manual upload

Locally installed system

- Platform independent: Mac, Windows or Linux (Ubuntu) based systems
- MRI series are sent to a local network computer
- Directly from the modality
- Integrated with existing PACS solution

How Does NeuroQuant Support Physicians?

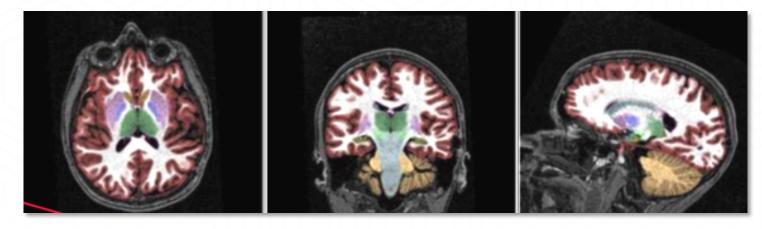
Quantitative MR Imaging Provides in Vivo Biomarkers for **Fast and Objective Evaluation** of:

- Alzheimer's Disease, MCI, Memory Loss
- Epilepsy

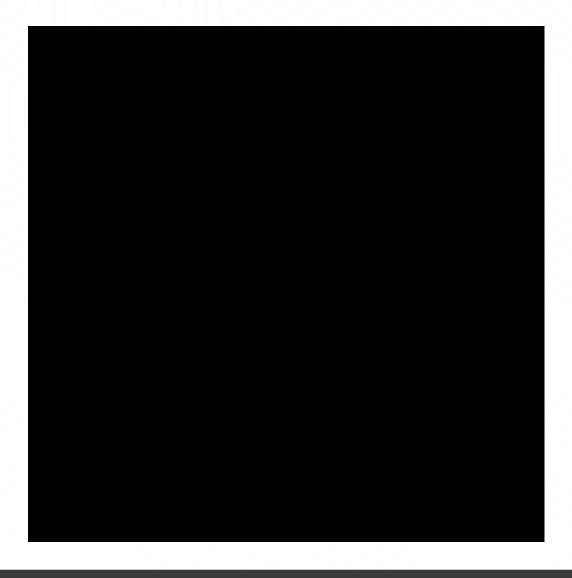
- Multiple Sclerosis
- Traumatic Brain Injury / Brain Trauma
- Brain Development

Helps Referring Physicians:

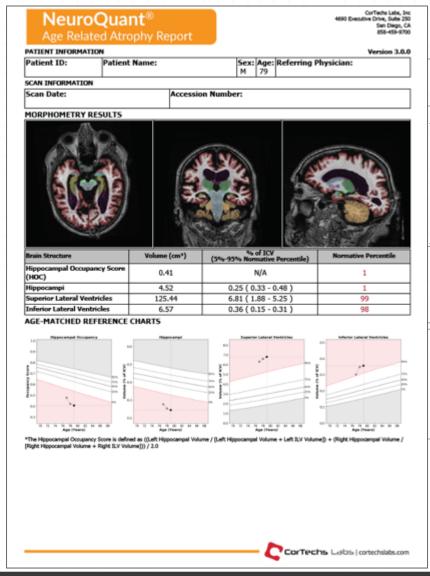
- Evaluate Disease Progression
- Monitor Disease
 Response to
 Treatments Over Time


Clinical Benefits:

- Eliminates Manual, Subjective Processes
- Easy to Incorporate into Workflow
- Provides Evidence of Brain Volume Loss
 - Available for Ages 3 Years to 100
- Delivers Additional
 Supportive Volumetric
 Data


What is Returned to PACs?

- 1 Segmented Images
 - 3 series: Axial, Coronal, and Sagittal
 - 256 images in each series


- 2 Change visualization if previous report is available
 - Heat map overlay highlights areas of atrophy, swelling, and tissue shifts on current scan
 - 3 series: Axial, Coronal, and Sagittal
- NeuroQuant Report(s) + General Morphometry Report

A Quick Look at Segmentation

Overview of NeuroQuant Report Layout

Patient demographic information, with referring physician and exam date

Axial, coronal and sagittal brain images

Table detailing report specific brain structures in raw volume, intracranial volume (ICV) percentage and normative percentile

Age and sex matched reference charts for report specific brain structures

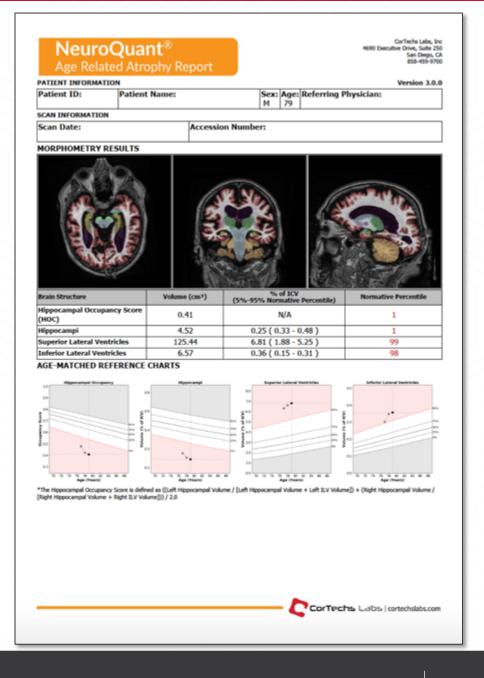
Age Related Atrophy Report

Clinical Assessment

- Age associated neurodegenerative conditions
- Dementia with Lewy bodies

Alzheimer's disease

Hippocampal sclerosis


Frontotemporal dementia

Hippocampal Occupancy Score (HOC)

A ratio of hippocampal volume to the sum of the hippocampal and ILV volumes in each hemisphere separately

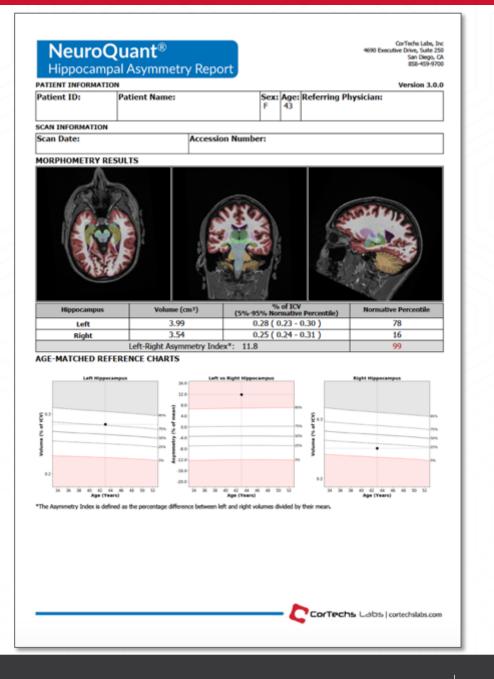
An estimate of mesial temporal lobe atrophy based on inferior lateral ventricle expansion

Age Related Atrophy Report - Example Interpretation

Example vMRI Findings				Hippocampal Occupancy	Hippocampi	Lateral Ventricles	Interpretation
Brain Structure	Volume (cm³)	% of ICV (5%-95% Normative Percentile)	Normative Percentile	////			
Hippocampal Occupancy Score	0.60	N/A	54	HOC: 0.60 cm ³ (54 th	Hippocampi: 6.06 cm ³	Superior Ventricles: 51.13	Normal Scan: Does not
(HOC) Hippocampi	6.06	0.39 (0.29 - 0.43)	72	percentile), within the	(72 nd percentile), within	cm ³ (41st percentile), within	support
Superior Lateral Ventricles	51.13	3.30 (2.48 - 5.79)	41	normative 5th-95th	the normative 5th-95 th	the normative	neurodegeneration
Inferior Lateral Ventricles	3.97	0.26 (0.19 - 0.35)	60	percentile range for the	percentile range for	5 th -95 th percentile range for	Hedrodegeneration
AGE-MATCHED REFERENCE CHARTS Superior Lateral Ventriches Supe			same age and sex Normal Volume	the same age and sex Normal Volume	the same age and sex Normal Volume Inferior Ventricles: 3.97 cm³ (60th percentile)		
Brain Structure	Volume (cm ³)	0 % on 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	on 60 60 60 60 60 60 60 60 60 60 60 60 60	110C: 0.42 are 2.41st	Himmonomia	Normal Volume	l our him o o o man al coalcona
Hippocampal Occupancy Score (HOC)	0.42	N/A	1	HOC: 0.42 cm ³ (1 st percentile), below the	<u>Hippocampi:</u> 3.82 cm³ (1 st	Superior Ventricles: 38,83 cm ³ (37 th percentile), within	Low hippocampal volum suggestive of local ex-
Hippocampi	3.82	0.25 (0.34 - 0.49)	1				
Superior Lateral Ventricles	38.83	2.56 (1.75 - 5.05)	37	normative range	percentile), below the	the normative percentile	vacuo dilatation
Inferior Lateral Ventricles	5.17	0.34 (0.14 - 0.29)	99		normative	range	
AGE-MATCHED REFERENCE C	HARTS	Superior Laboral Ventricins 10 10 10 10 10 10 10 10 10 10 10 10 10	Shiring Laboral Vandridge Sala Sal	Low Volume	range Low Volume	Normal Volume Inferior Ventricles: 5.17 cm³ (99 th percentile) High Volume	Supports MTL-focused neurodegenerative etiology

Hippocampal Asymmetry Report

Clinical Assessment


- Temporal lobe epilepsy
- Hippocampal Sclerosis
- Unilateral degenerative conditions

Hippocampal Asymmetry

- quantified
- Left and right hippocampi

 Hippocampi in relation to % of
- Left to right asymmetry index

Normative percentiles

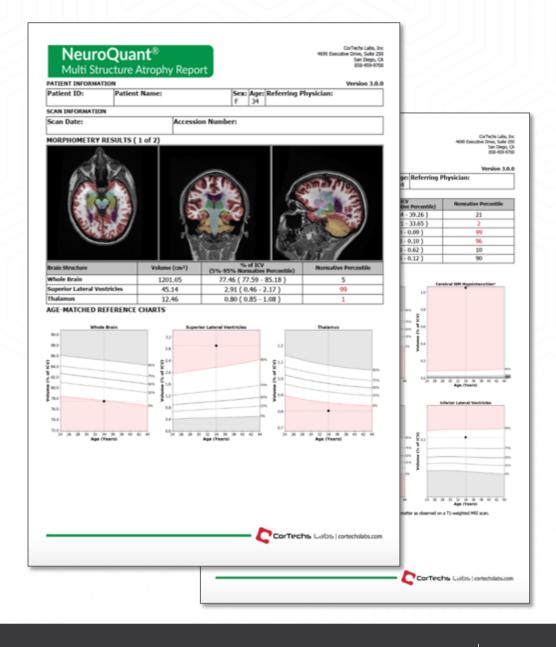
Multi Structure Atrophy Report

Clinical Assessment

- Multiple sclerosis
- Age associated neurodegenerative conditions

T1 White Matter Hypointensities

Monitoring and managing MS


9 Structures Graphically Displayed

- Whole Brain
- Cortical Gray Matter

■ 3rd Ventricle

- Lateral VentriclesCerebral White Matter
- Hippocampus

- Thalamus
- White Matter Hypointensity
- Inferior Lateral Ventricle

Triage Brain Atrophy Report

Clinical Assessment

- Subtle areas of post traumatic cortical encephalomalacia
- Subtle WM volume loss in patients with Diffuse Axonal Injury (DAI)
- Edema
- Atrophy

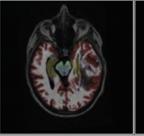
High Level Overview of 47 Structures

Global Volumes

- Presented as normative percentiles
- Left & right Global and Subcortical Brain structures
- Left & right Cortical brain regions by lobe

NeuroQuant® Triage Brain Atrophy Report

CorTechs Labs, Inc Address line 1 Address line 2 Preferred contact info


Version 3.0.0

Patient ID: Patient Name: Sex: Age: Referring Physician: 63


SCAN INFORMATION

Scan Date: Accession Number:

MORPHOMETRY RESULTS

Structure	Total Volume (cm³) 1579 1286 1144		78 99 99	
Intracranial Volume				
Whole Brain				
Forebrain Parenchyma				
	Percentiles			
Total Volumes	Left Right		t Total	
Cerebral White Matter	98	99	99	
Cortical Gray Matter	99	19	96	
Ventricles	- 6	20	11	
Cerebral WM Hypointensities*	99	- 1	99	
Subcortical Structures				
Cerebellar White Matter	10	11	10	
Cerebellar Gray Matter	16	18	17	
Brainstem			67	
Thalamus	53	87	75	
Ventral Diencephalon	72	80	77	
Basal Ganglia				
Putamen	3	15	7	
Caudate	1	17	1	
Nucleus Accumbens	96	96	97	
Pallidum	1	25	- 6	
Cingulate	74	28	51	
Anterior Cingulate	73	47	60	
Posterior Cingulate	84	61	75	
Isthmus Cingulate	40	8	21	

Cortical Brain Regions	Percentiles				
Cortical Brain Regions	Left	Right	Total		
Frontal Lobes	99	19	89		
Superior Frontal	99	31	82		
Middle Frontal	76	54	68		
Inferior Frontal	99	9	88		
Lateral Orbitofrontal	53	14	31		
Medial Orbitofrontal	24	40	33		
Paracentral	95	80	92		
Primary Motor	99	14	99		
Parietal Lobes	99	19	93		
Primary Sensory	99	46	98		
Medial Parietal	99	45	91		
Superior Parietal	63	9	29		
Inferior Parietal	89	42	71		
Supramarginal	99	22	99		
Occipital Lobes	40	10	22		
Medial Occipital	27	3	10		
Lateral Occipital	52	33	42		
Temporal Lobes	99	53	99		
Transverse Temporal + Superior Temporal	99	43	99		
Posterior Superior Temporal Sulcus	99	4	99		
Middle Temporal	87	85	89		
Inferior Temporal	98	- 6	66		
Fusiform	99	59	98		
Parahippocampal	99	28	80		
Entorhinal Cortex	78	80	83		
Temporal Pole	95	63	88		
Amygdala	30	96	75		
Hippocampus	99	67	98		

"White matter hypointensities are abnormally low signal intensity regions within white matter as observed on a T1-weighted MRI sca

Brain Development Report

Clinical Assessment

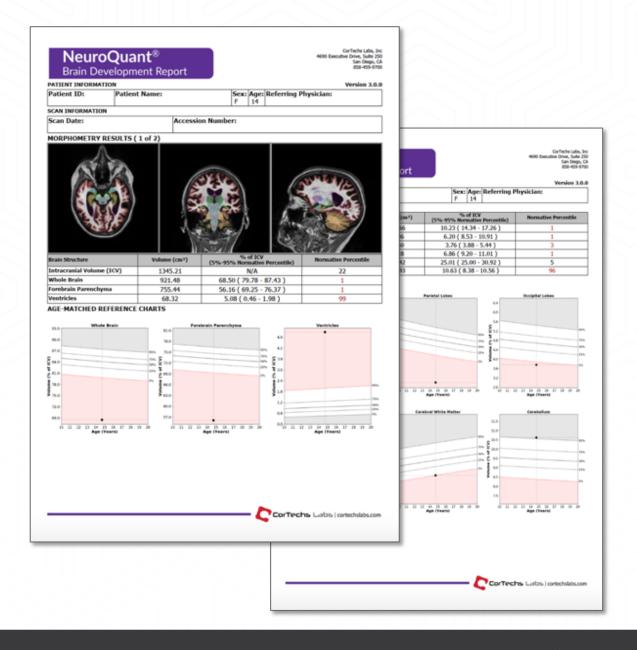
- Leukodystrophies
- Autism

✓ ADEM

Hydrocephaly

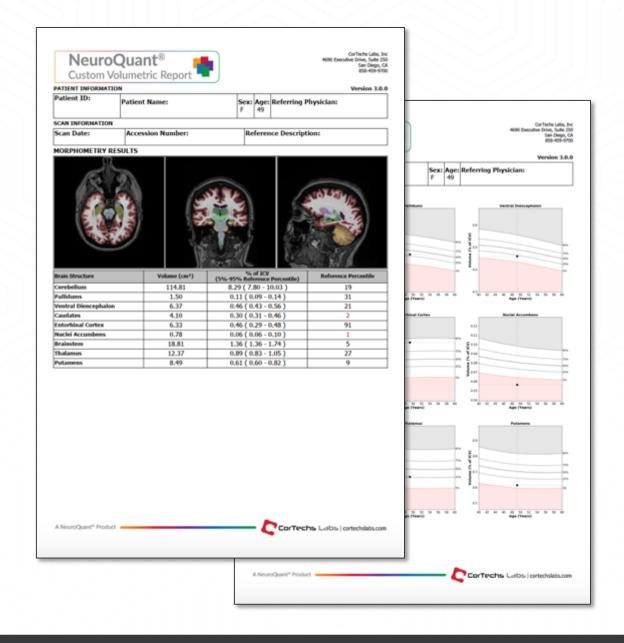
Cerebral Palsy

10 Structures Graphically Displayed


ICV

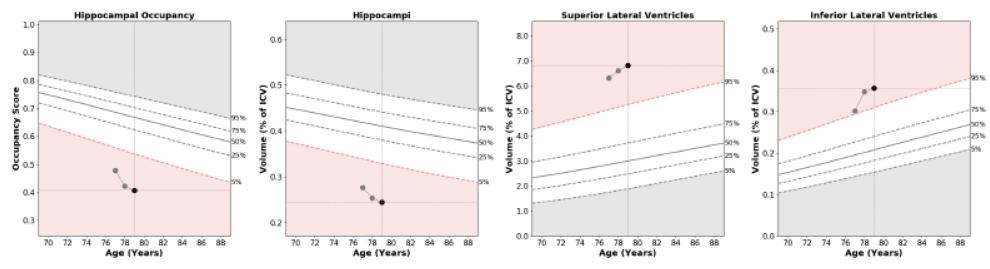
Ventricles

Frontal Lobes


- Whole Brain
- Cerebral White Matter
- Parietal Lobes

- ForebrainParenchyma
- Cerebellum
- Occipital Lobes
- Temporal Lobes

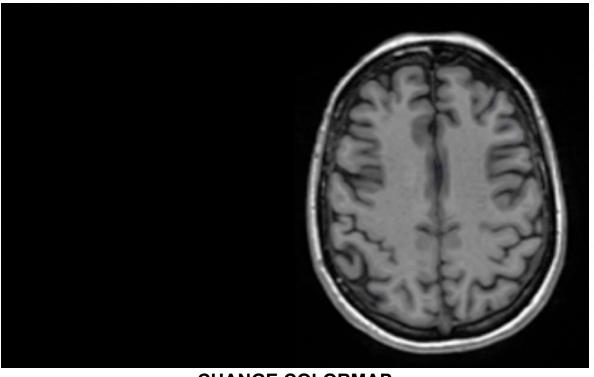
Custom Volumetric Reports


- Choose 9 different segmented brain structures
 - Left
 - Right
 - Both left and right
 - Asymmetry between left and right
- Incorporate brain structures not displayed in standard NeuroQuant reports
- Reduce the overall number of NeuroQuant reports to review
- Compare results to age- and sex-matched reference data or alternative (MCI or AD) reference data
- Separate license needed

Improve Patient Care with Longitudinal Tracking

Ongoing evaluation with multi time-point reports

AGE-MATCHED REFERENCE CHARTS


^{*}The Hippocampal Occupancy Score is defined as ((Left Hippocampal Volume / [Left Hippocampal Volume + Left ILV Volume]) + (Right Hippocampal Volume / [Right Hippocampal Volume + Right ILV Volume])) / 2.0

Ideal for reviewing patient cases on 1 comprehensive report versus 2 or 3

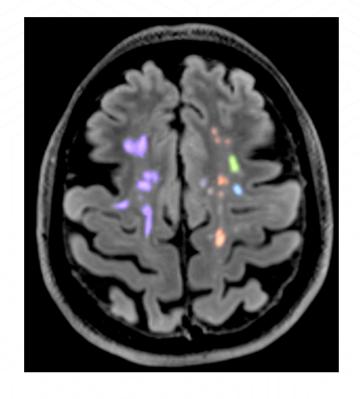
NeuroQuant Change Visualization

- Visualize volumetric change between two 3D T1 series
- Heat map overlay highlights areas of atrophy, swelling, and tissue shifts on current scan
- Easily visualize small changes to large volumetric shifts
- Monitor dementias, TBI, normal aging, and more

CHANGE COLORMAP

More enhancement	No change	More diminishment
(opaque)	(transparent)	(opaque)

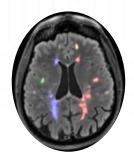
What is LesionQuant?


FDA CLEARED, CE MARKED, AND HEALTH CANADA, AUSTRALIA, AND KOREA LICENSED

Combines T2 FLAIR with the same 3D T1 MR images used for NeuroQuant for improved identification of brain lesions

- 1 Automatic lesion detection and quantification
 - Comprehensive reports include brain structure

volumes relevant to MS


- Provides volumes and counts of all, new, active and resolving lesions
- 4 Quantify and Visualize change in lesion burden over time

LesionQuantTM - Lesions, Quantified.

Fast, accurate & proven automated FLAIR lesion quantification and visualization.

Lesion Segmentation

Color-coded FLAIR lesion overlay of lesion segmentation

Lesion Volume Change Visualization

Color-coded FLAIR lesion overlay of lesion volume change when prior scan data is available

Comprehensive Volumetric Report

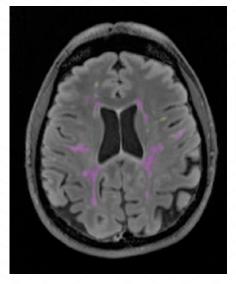
Volumetric data of brain structures and all new, active, and resolving lesions

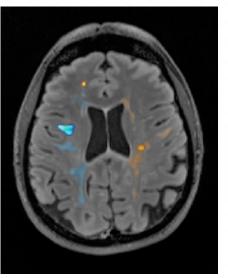
Exportable CSV File with Raw Data

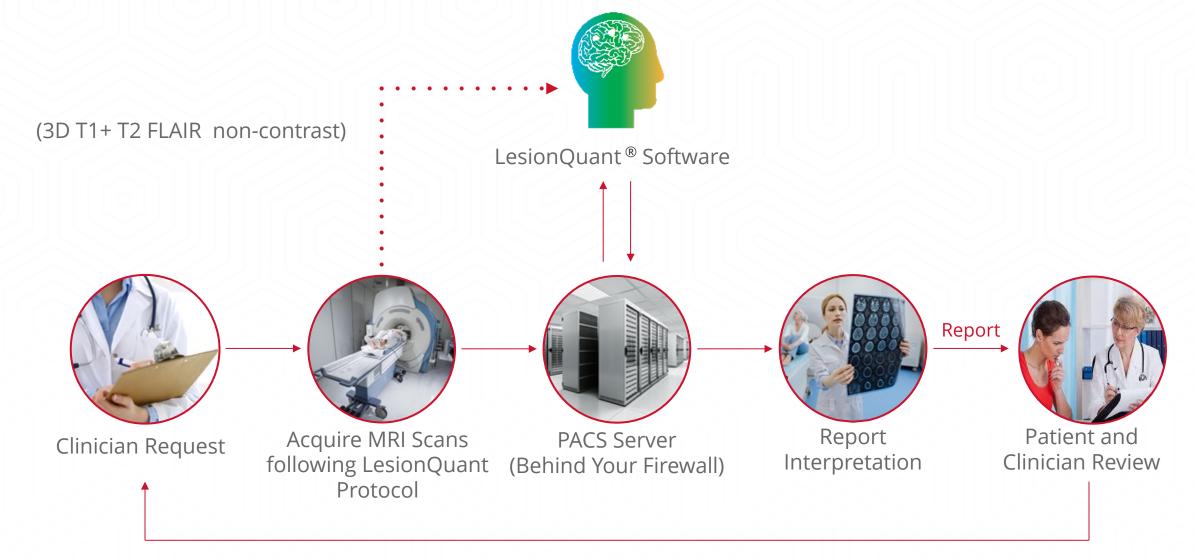
CSV File with extensive data for research needs

How Does LesionQuant Support Physicians?

Combines T2 FLAIR with the same 3D T1 MR images used for NeuroQuant for improved identification of brain lesions

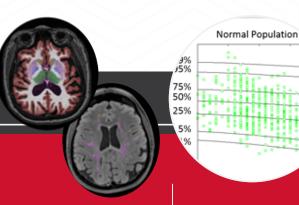

Automated

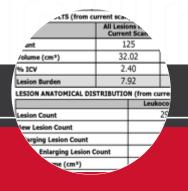

- Lesion identification, segmentation and count
- Lesion burden calculation and lesion size distribution
- Brain structure segmentation
- Multi time point evaluation
- Color-coded lesion segmentation visualization
- Color-coded lesion change visualization


Clinical benefits

- Reduces manual process
- Guides to the areas of most interest/concern
- Provides additional supportive volumetric data that can enrich clinical treatment planning and disease progression monitoring of patients

Integrates Within Existing Workflow


How LesionQuant Works

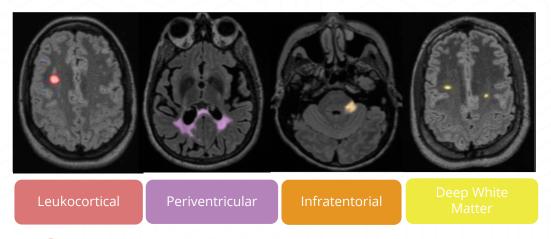


Static Atlas

Dynamic Atlas

10 y/o Female

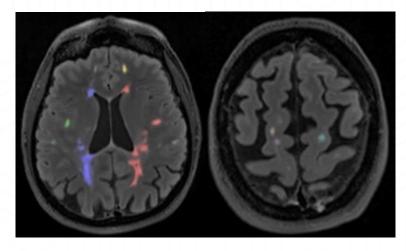
3D T1 and T2 FLAIR MR images are uploaded to software for processing Images registered to Dynamic Atlas™ Brain structures and lesions are labeled and quantified Volumes compared to healthy normative reference data


All, new, active, and resolving lesions counted; lesion burden calculated Change and longitudinal tracking provided from prior studies

Reports and segmented images returned to PACS

LesionQuant - Single Time Point

Regional Lesion Visualization:


Lesions are color-coded based on anatomical location

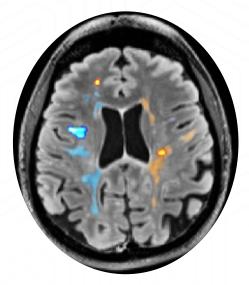
- Identify dissemination in space
- Analyze patterns of distribution for concordance with MS or other white matter diseases
- Highlight areas of highest lesion burden

Individual Lesion Visualization:

Each lesion receives its own color

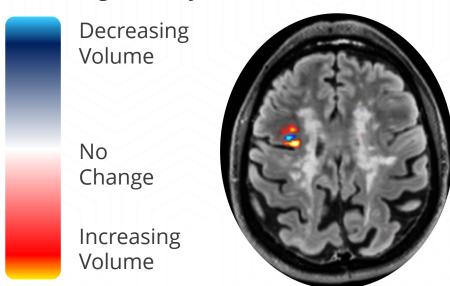
- Review the segmentation's lesion count
- Identify large confluent lesions
- Track lesions across orthogonal views

LesionQuant - Longitudinal Analysis


Lesion Change Visualization: Lesion volume changes are color coded to show net change per lesion, and highlight specific voxel change.

New

Active


Stable

Resolving

- Identify dissemination in time and space
- ✓ Highlight areas of disease activity
- Understand how areas of change affect overall lesion burden

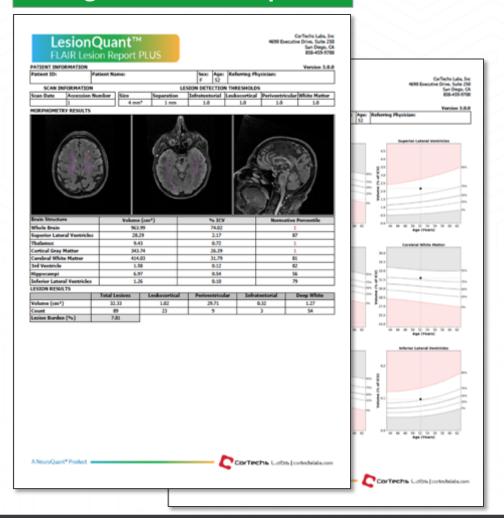
Brain Change Visualization: Small scale volumetric changes are color-coded to highlight areas of increasing and decreasing intensity.

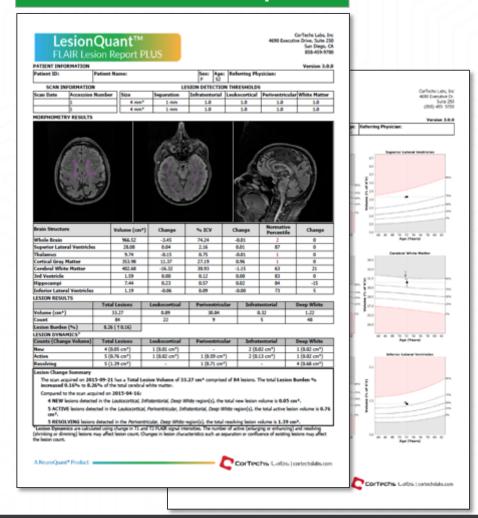

- Identify specific voxels that have changed
- Visualize brain changes outside the lesion map

What is returned to PACS for LesionQuant?

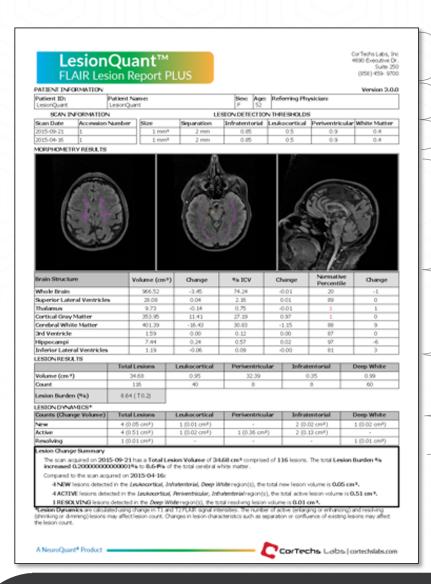
Up to 10 sets of color-coded volumetric image segmentations

- 1. LesionQuant Report
- 2. 3D T1 reconstructions
- 3. FLAIR reconstructions
- 4. Individual color coded overlays


- 5. Regional color coded overlays
- 6. NeuroQuant Volumetrics
- 7. Lesion change color coded overlays



LesionQuant FLAIR Reports


Single Time Point Report

Multi Time Point Report

Overview of LesionQuant FLAIR Report Layout

Report name and user site information NeuroQuant software version

Patient demographic information

Prior and current scan date and scanner information Lesion size and separation selection for current and prior scans

Lesion visualization in two representative axial planes, and either corpus callosum cross section view (3D FLAIR) or third axial view (2D FLAIR)

Table detailing total volume, % ICV and normative percentile for current and prior scans AND change (when prior scan available) for

- Whole brain
- Lateral ventricle
- Thalamus
- Cortical gray matter

- Cerebral white matter
- Third ventricle
- Hippocampi
- Inferior lateral ventricle

Table detailing lesion count and volume for all, enlarging and new lesions, and lesion burden (if two time-points are available)

Table detailing anatomical lesion volume distribution for all, enlarging, and new lesions; total and new lesions counts (if two time-points are available)

LesionQuant Flair Report Sample Interpretation

Example vMRI Findings							Structures	Lesions	Interpretation
Brain Structure	Volume (c	m³) Change	% ICV	Change	Normative Percentile		All structures are	Total lesion count of 134	This report compared the
Whole Brain	ole Brain 966.52		74.24	-0.01	2	0			
Superior Lateral Ventricles	28.08	0.04	2.16	0.01	87	0	within the normative	lesions	current scan to a scan
Thalamus	9.73	-0.14	0.75	-0.01	1	0	range except for the		acquired five months prior
Cortical Gray Matter	353.95	11.46	11.46 27.19		1	0		46 Leukocortical lesions	a a a a a a a a a a a a a a a a a a a
Cerebral White Matter	401.54	-16.20	30.84	-1.14	61	22	following:	40 Leukocoi ticai lesioris	
3rd Ventricle	1.59	0.00	0.12	0.00	83	0			LesionQuant has identified
Hippocampi	7.43	0.24	0.57	0.02	83	-15	Whole Brain: 966.52	8 Periventricular lesions	134 lesions with the total
Inferior Lateral Ventricles	1.19	-0.06 0.09		-0.00 73		5		o i enventricular lesions	
LESION RESULTS	ESION RESULTS					cm³ (2 nd percentile),		lesion burden to healthy	
	Total Lesions	Leukocortical	Periventricul	ar Infr	ratentorial	Deep White	below the normative	14 Infratentorial lesions	white matter volume of 8.719
Volume (cm³)	34.96	1.33	31.36		0.79	1.48	range		
Count	134	46	8		14	66		66.5	
Lesion Burden (%)	8.71 († 0.15)						Low Volume	66 Deep White Matter	The majority of lesions are
LESION DYNAMICS*								lesions	located in the Leukocortical
Counts (Change Volume)	Total Lesions	Leukocortical	Periventricul		ratentorial	Deep White		10010110	
New	4 (0.05 cm ³)	1 (0.01 cm³)	-	,	(0.02 cm ³)	1 (0.02 cm ³)	Thalami: 9.43 cm ³ (1st		and Deep White regions
Active	5 (0.76 cm ³)	1 (0.02 cm³)	1 (0.59 cm ³)) 2((0.13 cm³)	1 (0.02 cm³)	percantile), below the		demonstrating large
Resolving	9 (2.09 cm³)	1 (0.65 cm ³)	1 (0.71 cm ³)) 3 ((0.04 cm ³)	4 (0.68 cm³)	11 .		confluent lesions
Lesion Change Summary							normative range		Community residens
The scan acquired on 2015-09-21 has a Total Lesion Volume of 34.96 cm ³ comprised of 134 lesions. The total Lesion Burden % increased 0.15% to 8.71% of the total cerebral white matter.							Low Volume		The morphometry results
Compared to the scan acquired on 2015-04-16:							Cortical Gray Matter:		demonstrate Whole Brain,
4 NEW lesions detected in the Leukocortical, Infratentorial, Deep White region(s), the total new lesion volume is 0.05 cm ³ .									Cortical GM and Cerebral WN
5 ACTIVE lesions detected in the Leukocortical, Periventricular, Infratentorial, Deep White region(s), the total active lesion volume is 0.76							353.95 cm ³ (3 rd		demonstrate atrophy but are
cm ³ .							percentile), below the		
9 RESOLVING lesions detected in the Leukocortical, Periventricular, Infratentorial, Deep White region(s), the total resolving lesion volume is 2.09 cm³.							normative range		stable from previous scan
							Low Volume		The legion shange surrence
							LOW VOIGITIE		The lesion change summary
									demonstrates a mild increas
									in overall lesion volume
									in overall resion volume
(Age and sex matched reference charts on page 2 omitted)									

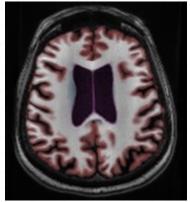
What is PETQuant?

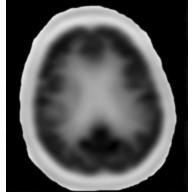
PETQuantTM

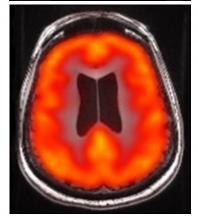

FAST, AUTOMATED ANALYSIS OF PET BRAIN STUDIES

Enables physicians and researchers to perform postacquisition analyses of PET brain studies to quantify subregional tracer binding in native patient brain space

- Visual and statistical comparisons of normalized regional brain tracer
- Values compared to normative database


2 Amyloid Deposition and Metabolism Analysis


Color overlay
visualization of 3D T1
MR on PET images



How does PETQuant Support Physicians?

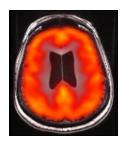
- Combines PET or PET/CT with 3D T1 MRI images to quantify sub-regional tracer binding in native patient brain space
- Automated
 - PET tracer binding is localized to identified brain structures
 - Amyloid deposition and metabolism analysis based on tracer used
 - FDG (metabolic)
 - Florbetapir (amyloid)
 - Brain structure segmentation
 - Ages 18-95 supported
- Clinical Benefits
 - Reduces manual process
 - Provides improved quantitative phenotyping

PETQuantTM - PET Studies, Quantified.

Fast, accurate & proven automated PET brain image analysis.

PETQuant is a research-only component of NeuroQuant that provides physicians with a cutting-edge tool for the study of diseases such as **Alzheimer's**. PETQuant automatically **quantifies PET tracer bindings** native patient brain space as identified by NeuroQuant 3D T1 MRI segmentation.

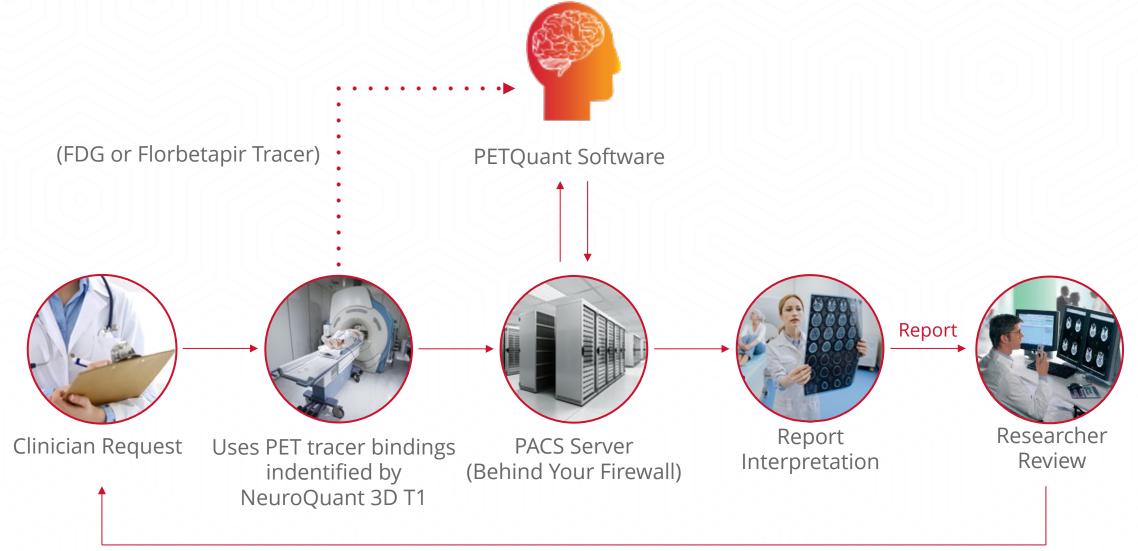
Comprehensive Volumetric Reports



Two reports options that correspond to the PET tracer used, Forbetapir or FDG

PETQuant Output

Color-Blended Segmentation Overlay


A color-blended brain segmentation overlay of the 3D MR series enables closer inspection on a PACS or other DICOM

Exportable CSV File with Raw Data

CSV File with extensive data for research needs

Integrates Within Existing Workflow

PETQuant Reports - Formatting

Report name and user site information

Patient demographic information with referring physician and exam date

Reformatted color overlay MR images in axial, coronal and sagittal planes

Table displaying in alphabetical order the normalized PET tracer intensity values and Z-score information for 46 brain structures (left and right hemispheres)


FDG Report

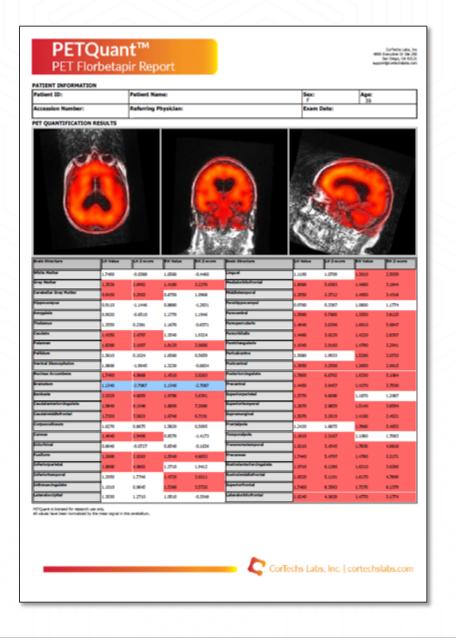
Research Use

- Alzheimer's Disease
- Frontotemporal Dementia
- Other dementias

FDG

- Binds to and labels where glucose is being metabolized. The PET scanner forms images based on the metabolism of FDG
- All FDG Report values have been normalized by the mean signal in the brain stem.

Florbetapir Report


Research Use

- ✓ Alzheimer's disease
- Frontotemporal dementia

- Dementia with Lewy bodies
- Corticobasal degeneration
- Primary progressive aphasia
- Dementia with Lewy bodies

Florbetapir

- Binds to beta-amyloid and reveals amyloid deposits, particularly in the regions known to be associated with beta-amyloid deposits
- All Florbetapir Report values have been normalized by the mean signal in the cerebellum.

What is CT CoPilot?

FAST, AUTOMATED ANALYSIS OF HEAD CT SCANS

A radiology productivity solution that improves workflow efficiency, measurement accuracy, and clinical confidence by providing consistent views of head CT exams and automated quantitative measurements

1 Consistent Anatomical Alignment

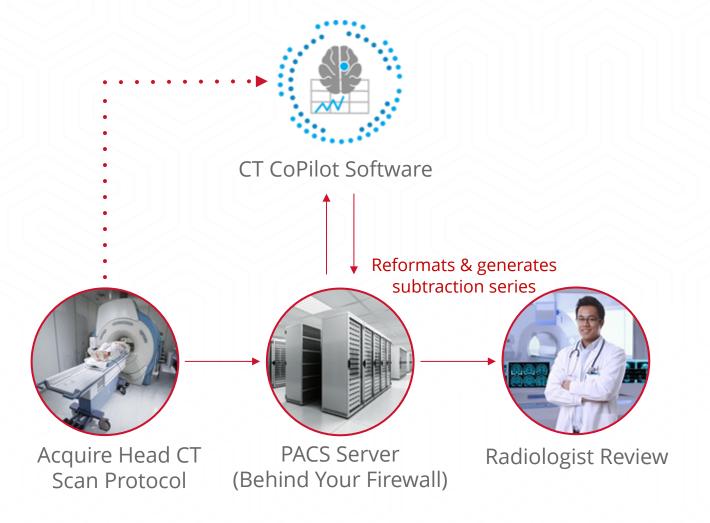
- Distinct Visibility of Change Over Time
- 2 Automated Quantification

How does CT CoPilot Support Physicians?

CT CoPilot enables radiologists to provide more accurate clinical assessments, achieving high levels of clinical confidence and productivity.

Automated

- Registers images to an anatomical atlas and generates aligned reformatted images
- Generates a subtraction series of current to prior exams for improves conspicuity of change over time
- Segments and quantifies lateral ventricle volume, intracranial volume and midline shift index, and reporting change over time

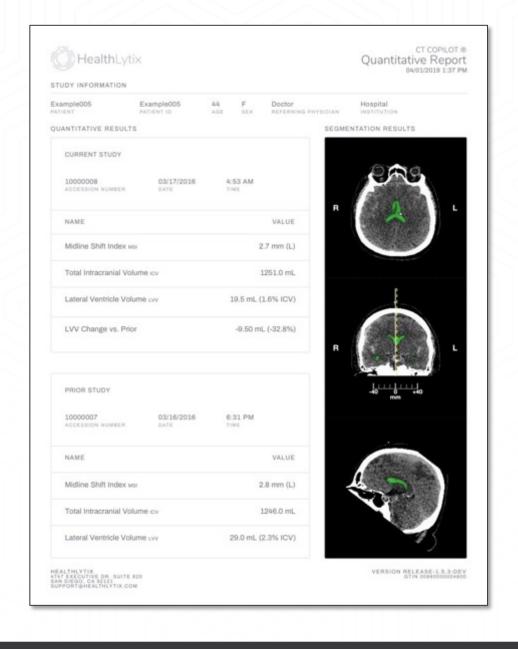


Clinical benefits

- Reduced interpretation time
- Standardization of exam viewing
- Improved clinical certainty

Integrates Within Existing Workflow

CT CoPilot Report


Clinical Use

Improves clinical certainty and reduces interpretation time

4 Quantitative Measurements

- ✓ Midline Shift Index
- ✓ Total Intracranial Volume

- Volume (LVV)
- LVV Change between current and prior study

CT CoPilot Report - Formatting

Patient demographic information with referring physician

Realigned and reformatted color overlay CT images in axial, coronal and sagittal planes

Current and prior scan information with each table displaying lateral ventricle volume, intracranial volume, midline shift index, and change in these metrics over time

Compatible Scanners

- Required and tested scanner settings
- Ensure accuracy and reliability of MR image segmentation

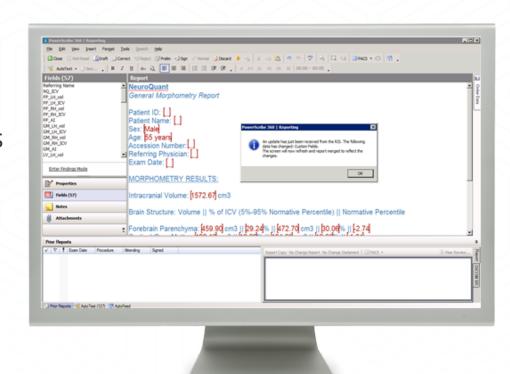
NeuroQuant 3D T1 MRI

- GE 1.5 T and 3.0 T scanners
- Philips 1.5 T and 3.0 T scanners
- Siemens 1.5 T and 3.0 T scanners
- Canon 1.5 T and 3.0 T scanners
- Hitachi 1.2 T, 1.5 T, & 3.0 T scanners

LesionQuant T2 FLAIR MRI

- GE 1.5 T and 3.0 T scanners
- Philips 1.5 T and 3.0 T scanners
- Siemens 1.5 T and 3.0 T scanners
- Canon 1.5 T and 3.0 T scanners
- Hitachi 1.2 T, 1.5 T, & 3.0 T scanners

PETQuant PET & PET/CT


- GE PET and PET/CT scanners
- Philips PET and PET/CT scanners
- Siemens PET and PET/CT scanners

- NeuroQuant 3D T1 non-contrast
- LesionQuant both 3D T1 and T2 FLAIR
- PETQuant requires both 3D T1 and PET or PET/CT for processing

Integrate NeuroQuant with PowerScribe 360

- NeuroQuant data is pre-populated into PowerScribe 360 prior to report dictation
- Works with online and installed NeuroQuant systems
- Eliminate time consuming dictation and transcription errors of numeric results
- More time efficient, data-rich and accurate reporting

Dark Background Report Option

- For comfortable reading room review
- White background still available for download as a PDF

Billing & Reimbursement

- NeuroQuant and LesionQuant are reimbursable, with the average range being \$40-\$95
- The main CPT® code is 76377
 - Category Other Diagnostic Radiology (Diagnostic Imaging), Related Procedures
 - Definition 3D rendering with interpretation and reporting of computed tomography, magnetic resonance imaging, ultrasound, or other tomographic modality

Additional codes

CPT 70553

CPT 70551

Category – Diagnostic Radiology (Diagnostic Imaging), Procedures of the Head and Neck

Contact Us

PHONE

+1 (858) 459-9700

EMAIL

info@cortechslabs.com support@cortechslabs.com

WEBSITE

www.cortechslabs.com

BLOG

www.cortechslabs.com/blog

