Auditory Cortex Tracks Masked Acoustic Onsets in Background Speech: A Potential Stream Segregation Mechanism

Christian Brodbeck ${ }^{1 *}$, Alex Jiao¹, L. Elliot Hong² \& Jonathan Z. Simon ${ }^{1}$ ${ }^{1}$ University of Maryland, College Park; ${ }^{2}$ University of Maryland School of Medicine; *christianbrodbeck@me.edu

Methods

Participants istened to 1 minute long audiobook segments in

- Single talker

Two talkers: one male, one female
Task: attend to one speaker, ignore the other
Attention counterbala Whole head magnetoencephalography (MEG) - Localized to cortical surface (minimum norm estimates) Brain responses were modeled as linear convolution of
predictor variables representing the stimul with to-beestimated temporal response functions (TRFs).
preat

B A
D

A) Sample response in one current dipole. Model fit evaluated
as the Pearson correlation between measured and predicted responses. B) The epredicted response was the sum of the responses to different predictor time series. modeling
concurrent rain responses to difterent features of the input. C) For moded estimation, spectrograns were decomposed into
8 frequency bins. DI Multi-imensional kernels, estimated with
 stimulus tre
(STRFs).
 full model was compared to a model in whics this pre
was temporally misaligned with the MEG responses.

Results

1. Single talker -1single speaker reaing audiobook excerpts

Predictor variables

Onsets: acoustic onsets, extracted from the gammatone
spectrogram, using a neurrally inspired edge detector Spetriogram, using a neurally inspiried ed
(Fishhocan, Nelken, and Yesturun 2001) Envelope: sustained acoustic signal from the gammatone
spectrogram
B) Model fit ($\mathrm{p} \leq .05$, corrected)

Both predictors contributed to brain responses, localization
consistent with sources in superior temporal Cegion of interest (ROI)
Temporal response functions were analyzed in STG, positive D) Temporal response functions (TRFs) Onsets: strong upward peak ($\sim 70 \mathrm{~ms}$ latency) followed by
downward peak $(\sim 130 \mathrm{~ms})$ Envelopes: TRFs are diminished compared to acoustic
onsets

2. Two talkers 地

 A) PredictorAcoustic onsets and envelopes each for:

- The acoustic mixture (heard by particip The acoustic mixture (hearard by participiants)
The unmixed to-be a ttended speaker The unmixed to-be attended speaker Model fits - Onsetss significant representation of onsets in the ignored
speaker even after controlling for the acoustic mixture and Speaker even after con
the attended speaker

Envelope: The ignored source could not be statistically
distinguished from a linear combination of the mixture and distinguished from a
the attended source

B) Tempo

nsets.
Early response to onsets in the acoustic mixure Addititonal, early response to onsets in either of the sources;
suggesest that onsets in both speakers are inititlly suggests that onsets in both speakers are initially
reoovered, even if they are not overrtly present in the
mixture $\rightarrow \rightarrow$ Later, $\begin{aligned} & \text { ne } \\ & \text { source }\end{aligned}$

Source onset STRFs Envelope STRFs
B
$0 \underset{\substack{100 \\ \text { Time (ms) } \\ 200 \\ 300 \\ \hline}}{ }$

3. Masked onsets A) The two-talker results (2) suggest that onsets in either
speaeker are represented, even it they are masked in the
 masked onsets were modeled separately for each of the
speakers. \rightarrow Overt onsets: occur in one of the speakers, apparent as onsets in ine acoustic mixure
\rightarrow Masked onsesto occur in one of the speakers at times where
there is no corresponding onset apporent in the mixture Model fits: even masked onsets in the ignored speaker
significanty improve model fit B) Temporal response functions (TRFs) B) Te

A

Early, upward peak: mainly bottom-up response \rightarrow Larger response to overt compared to masked onsets Shal ffect of attention on masked onsets only Later, downward peak: attentional processing \rightarrow Amplitude similar for overt and masked onsets C) Peak latency analysis - Both early and later peaks occurr significantly later for
masked onsets compared to overt onsets Onsets in ignored speech are not just passively perceived
when they are overt in the acoustic signal when they are overt in the acoustic signal, but are
represented even when they are masked, with a temporal represented even w
processing cost

Discussion

Main result: Acoustic features (onsets in the ignored speaker
are represented in auditory cortex even if they are not are represented in auditiory cortes
apparent in the acoustic mixture
Suggests reconstruction of features that are masked in the Suggests auditiory object representations, including (small)
attentional influence, even in early responses Active segregation of features of the ignored speech could
explain behavioral results: - Speech comprehension in the presence of another talker is
harder than in the presence of spectrally matched noise In mult-speaker environment, unintentional switching to
unattended speaker is more likely than simple inability to
understand attended speaker

Auditory (proto-) objects of the ignored speaker could explain attentionan capture and bottom-up switching to ignored speaker

ignored speaker

References

