Multivoxel pattern analyses of brain structure to classify dyslexia

<u>Ja Young Choi^{1,2}, Gabrielle-Ann Torre², Yaminah Carter², Terri Scott², Satrajit Ghosh¹, Tyler Perrachione²</u> ¹Program in Speech and Hearing Bioscience and Technology, Harvard University ²Department of Speech, Language & Hearing Sciences, Boston University

Summary

- Previous research has shown divergent results on neuroanatomical differences between control and dyslexic groups.
- Studies have used various morphometric measures and small sample sizes.

Research question:

Do local differences in gray matter density (GMD) or white matter density (WMD) across the whole brain characterize dyslexia?

- Using univariate voxel-based morphometry analyses, we found no significant difference in GMD or WMD between control and dyslexia.
- We used two machine learning models to classify WMD and GMD maps into two groups.

Subjects		
	Control (n=56)	Dyslexia (n=52)
Mean age (range) Sex	22.83 (18-32) F 31 / M 25	23.84 (18-38) F 38 / M 14
Non-verbal IQ (WASI)	116 ± 9.5	111 ± 12.4
WRMT ID	105 ± 13.4	96 ± 11.5
WRMT WA	103 ± 14.9	89 ± 13.0
TOWRE SWE	101 ± 16.0	87 ± 16.2
TOWRE Decoding	100 ± 16.5	85 ± 13.6

Data acquisition

Siemens Trio 3T; 32-ch coil; T1 ME-MPRAGE; 1mm³ voxels

Data preprocessing

- Each subject's T1 image was segmented into gray matter, white matter and CSF; then the GMD and WMD were calculated, all using Atropos in ANTs.
- Each subject's GMD and WMD maps parcellated using Freesurfer.
- Mean GMD and WMD within each parcel was calculated.
- Parcellated GMD and WMD maps were normalized to MNI template.

Classifier accuracy (%)

 Image: Second difference
 Share of the second difference
 Speech and Hearing

 Image: Harvard University
 Speech and Hearing
 Bioscience and Technology

jayoung_choi@g.harvard.edu http://sites.bu.edu/cnrlab