
• The gut microbiome of the Yucatan minipig appears fairly stable before any treatment, even across different
animals, both in terms of the species present and their relative frequencies.

• The dominant phylogenetics orders which occupy the Yucatan microbiome differ from human models such that
there isagreaterproliferationofCoriobacteralesandSelenomodalesorders inthehumangut(Almeidaetal.2019).

• Unlike a recent study in the murine model which showed that Bacteroidales and Clostridiales populations
continued to decrease and increase, respectively, three weeks post-injury, the relative frequency of Bac/Clos
populations in Yucatan minipigs returned to baseline levels ~2-3 weeks post-SCI (Kigerl et al. 2016), which is
more similar to the trend observed in human subjects following antibiotic treatment (Dethlefsen et al. 2008).

• HumanSCIpatientswereshowntohavelowerlevelsofbutyrate-producingbacteriasuchasPseudobutyrivibrio,Dialister
andMegamonasgenera,whichmayplayaroleinmicroglia-mediatedneurotoxicityfollowingSCI(Gungoretal.2016).

In recent years, the complex interplay of the microbiome, particularly the gut microbiome, and the
central nervous system (CNS) has become a growing area of research. Emerging evidence from
experimental models in stroke and traumatic brain injury (TBI), as well as spinal cord injury (SCI),
point towards a potential bidirectional communication: (1) changes in the gut microbiome after CNS-
trauma, and (2) the influence of this dysbiosis on disease pathogenesis. In addition, experimental
interventions on the gut microbiome have shown promise in improving functional outcomes in
murine models of SCI. This commensal relationship between changes in gut microbiome and human
health/disease provides an exciting new frontier in SCI research.
With the increased interest in the microbiome’s role in the pathogenesis of SCI, we aimed to
characterize the baseline gut microbiota and changes that are associated with SCI, using our pig
model. Hence, evaluation in a large animal model (e.g. pigs) with very similar gut microbiomes to
that of humans, is a crucial step in generalizing this knowledge to humans.

How the gut microbiome changes in a pig model of SCI
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Comparison of alpha diversity (species evenness and richness) following 
antibiotics treatment, dietary change and SCI

Figure 5. Species richness is the number of different species present in a sample whereas evenness compares the similarity of
the population size of each of the present species. Species evenness significantly decreased following antibiotics (ABX)
treatment, dietary change and during the acute stage after SCI. Species richness decreases in ABX and acute SCI. Differences
assessed using Kruskal-Wallis pairwise comparison. *=p<0.05; **p<0.01; ***p<0.001

Relative frequency of the four major bacterial orders in the gut 
following antibiotics treatment and dietary change

Figure 4. Fecal samples of SCI pigs showed a time-dependent effect of SCI on gut microbiome composition. Bacteroidales and Clostridiales, the
two most prevalent bacterial taxa in gut, were inversely regulated early after SCI (<14 days): Bacteroidales decreased as a function of time, while
Clostridiales increased. In addition, minor taxa, including Lactobacillales, and spirochaetales, were increased. Mean ± SD are represented as a
bold line and shaded region, respectively.

Figure 1. Relative frequency (%) of all bacterial phylogenetic orders present in fecal samples from Yucatan minipigs (n=9, 93
samples). Taxonomic distribution of the numerically abundant bacterial orders derived from the pig metagenomes revealed that Clostridiales ,
Bacteroidales , Spirochaetales , and Lactobacillales were the top four most abundant bacterial groups. Bacteriodales representing the largest
portion and accounting for ~40% of pig fecal samples, Clostridiales for ~35%, Lactobacillales for ~5%, and Spirochaetales for 5%.

Figure 2. (A) Relative frequency (%) of Clostridiales , Bacteroidales , Spirochaetales , and Lactobacillales in pig fecal samples were
generally consistent even across different animals from arrival at the animal facility to 30 days after arrival (n=9). (B) During and
after antibiotic (ABX) treatment, the relative abundance of Bacteroidales decreased and corresponded with increased Clostridiales
in two out of 4 animals. Additionally, bacterial depletion of Lactobacillales and Spirochaetales was observed after antibiotic
treatment. (C) Dietary change had little impact (n=3, 45 samples). Mean ± SD are represented as a bold line and shaded region.

Figure 3. Relative frequency (%) of all phylogenetic orders present in fecal samples from Yucatan minipigs (n=8, 59 acute, 40
sub-acute samples). Days relative to treatment increases from left to right. Clostridiales, Lactobacillales, Spirochaetales
populations seemed to increase in abundance following SCI – primarily in the acute stage (<14 days).

1/3 Mazuri® Mini Pig Youth pellets  
& 2/3 wet food (Pedigree)

For this study, female Yucatan miniature pigs were used. Four groups of animals: (1) Control, (2)
Antibiotic, (3) Diet, and (4) SCI), which were used to evaluate the effect of SCI on the composition of
the porcine intestinal microbiome while trying to control for dietary changes and antibiotic
treatment post-injury. SCI was induced by a 50-gm impactor dropped from a 20-cm height followed
by 5 minutes of compression (Lee et al., J Neurotrauma 2013, 30(3):142-59. doi: 10.1089)

To identify the gut microbial in our pig model, fecal samples were collected and prepared for bacterial 16S
ribosomal RNA (rRNA) gene sequencing. Genomic DNA was extracted from 288 fecal samples. PCR was used
to amplify the 16S rRNA gene from all the different chromosomes, resulting in a pool of 16S sequences
representing different species of bacteria present, approximately in proportion to their composition in the
porcine feces. Data was quantified and analysed using 16S rRNA gene bioinformatics pipeline.
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