
Automation through the Back Door
(by Supporting Manual Testing)

Seretta Gamba

AUGUST 2013

case
study

2Automation through the Back Door (by Supporting Manual Testing)

 Foreword
After I had been asked to contribute to the new EuroSTAR library of testing case studies,
I immediately thought about the chapter that I had written for the book by Dorothy
Graham and Mark Fewster (Experiences of Test Automation, January 2011). Since then
though, I have been working on a new project, a book about Test Automation Patterns
that was actually inspired from that very book. After reading the chapters of the other
contributors, I realized that all of us had used some of the same “patterns”, that is, used
similar solutions to solve similar problems. Since I didn’t find any book on the topic, I
decided to write one myself.

Fast forward to 2013. I have been able to involve Dorothy Graham and Mark Fewster in my
book project and we have already catalogued a good number of Test Automation Issues
and resolving Test Automation Patterns. So what I want to accomplish with this case study
is to show how I had tackled the problems described in my chapter in the book without
patterns and how I would address them now, with my new knowledge of patterns.

 Introduction
In my chapter (21, Automation through the Back Door), I first describe how we started with
test automation, which strategies we applied, and then how we solved the progressive
stagnation by supporting manual testing. I will follow the same structure here, but I will
first introduce the issues that we had to address and then the patterns that we applied
or that we should have applied. Note that we used the patterns not knowing that we did.
I will briefly explain issues and patterns as we need them, but for more details, you will
have to wait for the book! Or contact me, see Conclusion for details.

 Background for the Case Study
Around 2001 my company decided that we needed test automation and I was charged
with its introduction and maintenance. Starting with test automation is one of the first
issues that we catalogued (NO PREVIOUS TEST AUTOMATION1). To solve it we suggest
doing a number of patterns:

1. SET CLEAR GOALS: This pattern is critical. It must be applied at the beginning of any
 big or small automation effort
2. MANAGEMENT SUPPORT: Also critical. Automation efforts that are driven only by a
 lone hero are much more apt to stall because nobody else knows about it or can use
 and maintain what has been developed
3. DEDICATED RESOURCES: This pattern is especially important at the beginning of a
 new automation effort. Depending on the size of your automation you can later
 slacken its use
4. RIGHT TOOLS: This pattern is essential for long lasting automation
5. AUTOMATION ROLES: Use this pattern to fill the roles you need to develop the
 automation testware. If possible use a WHOLE TEAM APPROACH.
6. PLAN SUPPORT ACTIVITIES: Don’t forget to apply this pattern if you want to be able
 to keep your schedules. Missing support from specialists can ground a project pretty
 effectively!
7. MAINTAINABLE TESTWARE: Apply this pattern from the very beginning if you want
 your automation effort to be long lasting and your maintenance costs low
8. AUTOMATE WHAT’S NEEDED: This pattern shows you how to select the features most
 worthy to be automated
9. TAKE SMALL STEPS: This pattern is especially important in the beginning, but it
 should always be kept in mind
10. UNATTENDED TEST EXECUTION: This pattern gives you a goal to work towards in
 your automation

Did we use them all? Well, not completely and that was actually one of the reasons for
stagnation later on. Let’s examine what went on.

•	 SET	CLEAR	GOALS:	we	defined	what	we	wanted	to	automate	first,	the	regression	
 tests for our registration product2
•	 MANAGEMENT	SUPPORT:	the	project	was	initiated	by	management	because	it	was	
 recognized that we could not afford to lose customers just because our testers were
 overwhelmed by regression testing
•	 DEDICATED	RESOURCES:	this	is	one	pattern	that	we	completely	underestimated.	I	
 was doing all the automation work on the side-lines of my regular work! Not good!
•	 RIGHT	TOOLS:	we	selected	a	Capture-Replay	tool,	QARun,	which	could	easily	drive
 our application. We were warned by the sellers though that a new product was
 being developed and it would not be compatible with the old one
•	 AUTOMATION	ROLES:	this	was	also	a	pattern	that	we	ignored.	I	was	tester,	

 1Issues are shown in ITALICS CAPS and patterns in CAPS 2My company develops standard software for insurances. We offer products for registration with the German finance
authority (BaFin) and to manage assets or portfolios for an insurance company

3Automation through the Back Door (by Supporting Manual Testing)

 automator, developer, project leader…all in one!
•	 PLAN	SUPPORT	ACTIVITIES:	another	missed	opportunity.	In	the	beginning	I	didn’t	
 need very much support, so I didn’t care to plan for the future and it came back later
 with a vengeance
•	 MAINTAINABLE	TESTWARE:	since	I	come	from	development	this	was	the	pattern	that	
 I applied best
•	 AUTOMATE	WHAT’S	NEEDED:	this	worked	out	pretty	well	(at	least	at	first)
•	 TAKE	SMALL	STEPS:	yes,	I	used	this	one	too
•	 UNATTENDED	TEST	EXECUTION:	and	of	course	this	was	our	target	(and	we	reached	
 it)

To recapitulate: with no knowledge of patterns, we did quite a lot right, but what we
ignored came back later to haunt us.

I think the most critical pattern at this point was MANAGEMENT SUPPORT. Since the
project had been started by management (my boss) I believed management support a
no brainer. But there is more to this pattern. Let’s examine in detail some of the pattern
suggestions:

•	 Build	a	convincing	TEST	AUTOMATION	BUSINESS	CASE.	Test	automation	can	be	quite	
expensive and requires, especially at the beginning, a lot of effort.
•	 A	good	way	to	convince	management	is	to	DO	A	PILOT.	In	this	way	they	can	actually	
“touch” the advantages of test automation and it will be much easier to win them over.

We didn’t develop a business case. I didn’t realize then how important it was and since
my boss was bought-in on test automation, he also believed it wasn’t necessary. The
problem is that without a business case there is no real commitment from management
to continue to support test automation when for instance development projects come
to need the same resources. Just as for testing in general, test automation doesn’t come
first!

The pattern DO A PILOT also offers quite a number of important suggestions:

•	 First	of	all	SET	CLEAR	GOALS:	with	the	pilot	project	you	should	achieve	one	or	more	
 of the following goals:
 o Prove that automation works on your application
 o Chose a test automation architecture
 o Select one or more tools
 o Define a set of standards

 o Show that test automation should deliver a good return on investment
 o Show what test automation can deliver and what it cannot deliver
 o Get experience with the application and the tools
•	 Try	out	different	tools	in	order	to	select	the	RIGHT	TOOLS	that	fit	best	for	your	
 Software Under Test (SUT), but if possible PREFER FAMILIAR SOLUTIONS because
 you will be able to benefit from available know-how from the very beginning.
•	 Do	not	be	afraid	to	MIX	APPROACHES	
•	 See	that	you	get	the	people	with	the	necessary	skills	right	from	the	beginning
 (AUTOMATION ROLES).
•	 TAKE	SMALL	STEPS,	for	instance	start	by	automating	a	STEEL	THREAD:	in	this	way	you
 can get a good feeling about what kind of problems you will be facing, for instance
 check if you have TESTABLE SOFTWARE
•	 Take	time	for	debriefing	when	you	are	thru	and	don’t	forget	to	LEARN	FROM
 MISTAKES
•	 In	order	to	get	fast	feedback	adopt	SHORT	ITERATIONS	

We performed most of the suggested patterns (again without knowing it), but I think
that the most grievous error was that we never stopped to look back at what had been
achieved, what could have been done better and so forth, that is we forgot the debriefing
and just went on as before. In this way, as I already mentioned, we missed some important
patterns (the most important was AUTOMATION ROLES) and didn’t even notice it.

 Our Technical Solution
Since it is important to understand how we did our automation, I will describe in more
detail the pattern MAINTAINABLE TESTWARE. In order to develop automation that will be
long lasting this pattern suggests applying some other patterns3:

•	 DOMAIN-DRIVEN	TESTING
•	 GOOD	DEVELOPMENT	PROCESS
•	 GOOD	PROGRAMMING	PRACTICES
•	 OBJECT	MAP

Applying the pattern GOOD PROGRAMMING PRACTICES came naturally to me (as I
already mentioned I come from development and I still work as a developer). It suggests
that since scripting is a kind of programming, you should use the same good practices as
in software development.

 3The patterns are in alphabetical order and not necessarily in order of importance

4Automation through the Back Door (by Supporting Manual Testing)

The recommended patterns are:

•	 DESIGN	FOR	REUSE	
•	 KEEP	IT	SIMPLE	
•	 SET	STANDARDS	
•	 SKIP	VOID	INPUTS	
•	 Separate	the	scripts	from	the	data:	use	at	least	DATA-DRIVEN	TESTING	or,	better,	
 KEYWORD-DRIVEN TESTING
•	 Apply	the	DRY	Principle	(Don’t	Repeat	Yourself).	Also	known	as	DIE	(Duplication	is	
 Evil)

Even without recognizing the patterns for such, we applied every one of them.

Another pattern that I applied, even if it is not suggested by MAINTAINABLE TESTWARE,
was GET TRAINING: since I had never before worked with test automation, I got all the
available books; I searched all possible internet forums and studied how to work with
our chosen tool. In this way I came “automatically” to develop a variation of the pattern
KEYWORD-DRIVEN TESTING4, which in fact is one of the patterns suggested for the
implementation of DOMAIN-DRIVEN TESTING. This variation we called Command-Driven
Testing.

 Command-Driven Testing
Since we wanted to reduce to a minimum what we had to implement in the language of
the test tool (we knew from the beginning that it would be changed in the near future)
we decided to use keywords that were not domain terms but just simple commands (like
INPUT or SELECT) and that thus didn’t need any application specific implementation. To
change the tool we would need only to implement these “primitive” commands in the
language of the new tool. An important side benefit was that we could use the same
interpreter scripts for all our products, even if they belonged to other domains and were
implemented in different environments. Another payback for this system is that we
can use different tools concurrently since only the internal interpreter changes, not our
functional scripts.

We didn’t stop there. I had studied the advantages of the pattern DATA-DRIVEN TESTING5
and devised a way to get the same benefits: we split our command scripts into a DRIVER
part and a DATA part. In the DRIVER-File the variable data is replaced with placeholders
and in the DATA-File the placeholders are substituted with the actual data. In this way, as
with DATA-DRIVEN TESTING, we can have any number of DATA files to one DRIVER file.

Figure 1 details how this works out in practice: the interpreter script (Script Runner)
executes the DRIVER script sequentially. Every time it finds a placeholder, for instance
<LastName> it looks for the data in the corresponding DATA file. In this case it would
substitute it with the word “Doe”. To make the scripting even more flexible the interpreter
script ignores statements that contain placeholders that are not to be found in the
corresponding DATA file7. After this substitution all remaining commands (for instance
INPUT) are translated in the internal scripting language of the tool and executed.

I realized pretty soon that in order to implement Command-Driven Testing I would need
an appropriate framework (yes, this is a pattern too: TEST AUTOMATION FRAMEWORK). I
wrote it first as a small utility program, but, as more and features were added, it evolved
into a full-fledged framework (ISS Test Station). One of the first features implemented

4KEYWORD-DRIVEN TESTING tells you to add to each line of test data a keyword that drives how it should be
processed. You then need a framework that provides the expected functionality for each keyword. This is usually implemented
with libraries in the script language of the test tool. For every line of data that has to be executed the framework must call
the library script that implements the keyword. Generally the keywords are domain specific terms that imply some more or
less complicated processing.

5With DATA-DRIVEN TESTING you extract the variable data from your scripts, so that you can use the same script for
any number of similar test cases. The data is usually stored in some external file that is read by the script
6This figure has been taken from my chapter in the book Experiences of Test Automation
7Btw this is also a pattern, SKIP VOID INPUTS

Figure 16

5Automation through the Back Door (by Supporting Manual Testing)

was an automatic translation of captured scripts into our DRIVER / DATA formalism. In this
way the scripts can be developed quite efficiently:

1. The capture functionality of the tool is activated
2. A tester performs all possible actions on a window of the application, that is touches
 all the GUI-elements on it
3. With modern tools (for instance TestComplete) the tool automatically maps the
 objects while recording. With older tools they must be registered in the proprietary
 object map8 of the tool beforehand.
4. The capture functionality is deactivated and the script (if necessary) exported to a
 text file)
6. To create new tests one just has to copy the template to a new DATA file and adjust
 the data accordingly (that is modify what has to be changed and eliminate what is
 not necessary for that particular test case)
7. The scripts are created window-wise (another pattern, SINGLE PAGE SCRIPTS) and are
 subsequently assembled together to form a test case
8. Similar test cases finally are grouped together to form test suites

The framework also supports development and maintenance of automated test cases
and starts the script interpreter in the selected tool to perform and log the tests.

Developing this framework was thus done using (without knowing it) even more patterns,
for instance CAPTURE-REPLAY, DATA-DRIVEN TESTING, GOOD PROGRAMMING PRACTICES,
KEYWORD-DRIVEN TESTING, TOOL INDEPENDENCE and DESIGN FOR REUSE.

You probably noticed that some patterns show up repeatedly. This is one of the charms of
patterns: you don’t need a lot of complicated ones, but just a number of simple ones that
you can combine to describe quite complex solutions.

 Day by Day Experiences
After all this had been implemented, I stopped doing the automation myself and started
to train and coach colleagues from the various projects. Here also we implemented some
patterns and, not knowing better, left some important ones out.

One	issue	that	we	disregarded	was	INADEQUATE	TEAM.	We	did	use	AUTOMATION	ROLES
as suggested and, again as suggested, used GET TRAINING, but we could not select
the team and had to manage with colleagues who were not needed for development.
The pattern (AUTOMATION ROLES) warns that one needs special skills for the different
automation roles and we had completely disregarded it. Of course it should be just
sensible to choose the right people, but in my experience one often thinks, that it will
work out somehow.

If you have a pattern, that at least confronts you with the problem from the beginning.
You cannot say afterwards that you didn’t think about it.

Another pattern that we more or less ignored was FULL TIME JOB. As I already mentioned
I did most of the automation work on the side-line, actually because I found it really
interesting, I just couldn’t let it go. But in this way I apparently let management believe
that everybody would be doing it just like me and we lost a very good and experienced
colleague, because she was not willing to sacrifice all her free time for the job.

In one project we got a developer turned tester that knew her application perfectly and
had the “developer” mind-set that is just perfect to develop good automation. However
she automated her manual test cases as is, so that her test cases turned out to be long
and complicated scenarios where it was difficult to locate the problem once they failed.
Here it would have been better to use patterns like KEEP IT SIMPLE, ONE CLEAR PURPOSE
or EASY TO DEBUG FAILURES.

In another case we had somebody who did know the application, but had no idea and no
aptitude for development. And to make things worse, he had obviously never heard of
a pattern called ASK FOR HELP! When he found a problem, he never said a word and just
waited until somebody would ask him how it was going. Only then he would tell that he
hadn’t been able to do anything for x days because of some problem!

Of course we also had a newcomer that already had experience with KEYWORD-DRIVEN
TESTING and her automation was impeccable. She used all the right patterns (DESIGN FOR
REUSE, KEEP IT SIMPLE, ONE CLEAR PURPOSE, READABLE REPORTS etc.), again without
knowing that she did!

One pattern that we applied with success was GET ON THE CLOUD. Our company is based
in Hamburg, Germany, but many colleagues live in other cities (like Berlin or Cologne)
and all work from home regularly. We put our automation on the cloud and in this way
it makes no difference where you work. Another advantage is that two persons can 8The name for the object repository can change from tool to tool, but every tool provides the means to register the objects.

Giving objects the same names in every used tool is a precondition for tool independence (pattern OBJECT MAP).

6Automation through the Back Door (by Supporting Manual Testing)

connect to the same virtual machine and can in this way PAIR UP9 even if they are located
in different cities. Being on the cloud is also cheaper so one can have an extra machine
for every operating system or database. In this way it’s also easier to have DEDICATED
RESOURCES.

Another pattern that we applied even though we didn’t realize that it was a pattern is SET
STANDARDS. We defined one set of standards that is applicable for the whole company,
but gave the different projects the liberty to choose project internal standards. This also
has the advantage that in our periodic test management meetings we can hear how
it works out for them and the other projects can profit from their experience (another
pattern SHARE INFORMATION).

One of the most important standards that we defined was that every test case had to
be independent from all others (and of course this is a pattern too, INDEPENDENT TEST
CASES) and had to prepare its own setup (FRESH SETUP). In a few cases we allowed
exceptions, but by and large all projects complied with this rule.

Another standard that has proven valuable was to automate each window independently
(yes, another pattern, SINGLE PAGE SCRIPT). In this way when our test cases move thru
several windows we have a standardized modularization.

As I mentioned before I have written a framework (TEST AUTOMATION FRAMEWORK) to
support our automation (ISS Test Station). Having an in-house solution has the advantage
that when we had problems automating some part of the SUT where the developers had
been particularly inventive10, we could tweak the framework as needed. To this day we
have managed to automate everything we had planned.

 Stagnation
Having implemented such a sophisticated framework, we expected the ratio of automated
to manual tests to steadily grow. Instead we faced stagnation in one of our most important
products. What happened? This product was way too successful! It sounds crazy, but the
fact is that for the small company that we are, what is outstanding for marketing can be
deadly for test automation. The reasons are simple:

•	 INADEQUATE	SUPPORT:	Developers	and	testers	were	needed	for	customer	projects.	
 Guess what our management decided when confronted with the choice between
 earning money now and expanding test automation for better regression tests in the
 future!

•	 NO	INFO	ON	CHANGES,	INADEQUATE	COMMUNICATION:	The	application	was
 updated again and again. The automation was not informed about the new features
 and needed help from the testers. They on the other hand didn’t have time to
 support the test automation project that would have helped diminish their own
 testing effort (yes, a typical catch-22 situation!)

 Looking for a solution
Having understood the issues (note that we hadn’t categorized them yet) I started to look
for possible solutions. The main problem was how to get the needed information from
the testers without forcing them to “loose” time with automation problems.

I guessed that a way could be to get this information as a side-product of what the testers
had to do anyhow, manual testing To verify this hunch I had to extract from the testers
how they prepared and executed their manual tests. So I implemented, again without
knowing it, the pattern, SHARE INFORMATION. Here is what it suggests to do:

•	 ASK	FOR	HELP	when	you	have	a	problem	or	a	question:	you	should	never	ponder	too
 long on some issue, other people may have already solved just the same question

•	 Listen	to	testers	or	developers.	Ask	why	they	do	something	and	why	they	do	it	as	
 they do. If you find out what they really need, you can support them even better
 than you were planning

Let’s take a look at what our issues would have suggested to tackle this kind of
problems.

•	 INADEQUATE	SUPPORT:
 o MANAGEMENT SUPPORT: I did try to apply this pattern, but, as mentioned above,
 without success
 o PLAN SUPPORT ACTIVITIES: this should have happened much earlier, at this point
 I didn’t have a chance

9The pattern PAIR UP tells you do pair automating (like pair programming in agile development)
10This issue we called HARD-TO-AUTOMATE

7Automation through the Back Door (by Supporting Manual Testing)

•	 NO	INFO	ON	CHANGES:	
 o SHARE INFORMATION: without knowing it, I had chosen the right approach

•	 INADEQUATE	COMMUNICATION:
 o SHARE INFORMATION: see above
 o WHOLE TEAM APPROACH: this pattern works in agile environments. At the time we
 were not really agile enough for it to be applicable

Most of the patterns suggest getting information on the problem. At this point they
cannot be more specific, because the solution will depend on what you will find out.

After coaxing or cheating the testers to answer my questions, I had a good idea of how
they were working. They had, for every application area, template spreadsheets with the
test case specifications. To perform the tests they would copy the template and perform
the tests as specified. They would write the results or eventual updates directly in this
new document. For failed tests they were also supposed to open a correction issue in the
development control system.

There were several issues that could be improved in this process, for instance:

•	 Since	the	testers	would	write	not	only	the	results,	but	also	changes	or	enhancements
 to the test cases on their own private spreadsheet, it was later necessary to merge
 such updates to the original template, a task that was not only boring, but also prone
 to errors
•	 When	creating	a	defect	issue	in	the	development	control	system,	testers	would	be
 pulled out of the test flow
•	 Often,	in	order	to	report	the	failure	correctly,	they	had	to	repeat	the	test.
•	 If	they	didn’t	detail	the	failures	well	enough,	then	the	developers	had	problems	
 locating the bugs
•	 Metrics	combining	test	execution	with	defect	status	had	to	be	compiled	manually,	
 because the information was stored in different systems

I decided that the problem could be solved by adding a manual testing feature to our test
automation framework. This new application would have to offer substantial advantages
to any tester using it (otherwise why take the trouble to change) and at the same time
harvest the test execution information for later automation

The next step consisted in examining what features our framework already contained
(see Table 1) and what would have to be implemented to support manual testing (see
Table 2).

Table 111 – Available features

11Tables 1 and 2 are taken from my chapter in the book

Manual testing issue

Maintain test cases

Overview of the available test
cases

Logging of test results

Result reports or overviews

Prioritization of the test cases

Defect reporting to
development control process

Framework Solution

Test maintenance features:

add, update, copy and remove objects
at every level of the test suite or suite
list hierarchy

completely integrated configuration
management

Test suites group the test cases in a
hierarchical structure that is displayed
in tree form. Related test cases can
be displayed by expanding the tree
nodes.

Suite lists group related test suites

Logging information is automatically
recorded in separate logging files.

Result reports, overviews and cross-
reference lists can be displayed (or
printed) with different contents and
different granularities:

Command script
Test case
Test suite
Suite list

Priority feature: test cases can be easily
prioritized in order to specify which
ones are to be executed in a particular
test session. This feature allows us to
use the same test suites for regression
and smoke tests.

Integration with development control
process:

New defect-items can be created
directly out of the result reports.
All known data is automatically
transferred, so that testers in most
cases have nothing else to do.

Importance

Critical: this feature must offer
the same comfort as in the
current process, although in a
different format

Critical: the new process must
offer at least the same comforts
as the old one. No tester would
do without

High: separates update
functionalities from the logging
functionalities.

Critical: by offering statistics that
include not only the completion
status of test execution but also
the defect tracking data, we
offered an important incentive to
use the framework

High: prioritization was a feature
that they valued and would
certainly not want to miss.

High: enables testers to report
defects to the development
control system with the push of
a button

8Automation through the Back Door (by Supporting Manual Testing)

Table 2 - Features not currently available in our framework

Manual testing issue

Support for manual test execution

Import test-template sheets to framework suites

Detail test execution for developers

Support the creation of input data or compare
files

Solution

The test cases that should be executed (selected by priority) must be displayed sequentially.

The tester must be able to see simultaneously both the test specifications and the application
under test (paperless execution)

The tester can perform any of the following actions:
•	 Perform	the	test	case	and	set	the	test	status
•	 Move	to	the	next	planned	test	case
•	 Skip	the	test	case
•	 Interrupt	the	test	session
•	 Continue	the	test	session
•	 Finish	the	test	session
•	 Change	the	current	test	case	specifications
•	 Create	a	new	test	case
•	 Eliminate	the	test	case
•	 Create	a	defect	item
•	 Start	test	recording
•	 Interrupt	the	recording
•	 Restart	the	recording
•	 Stop	recording

The original test cases must be imported from the current spreadsheets (csv-files) to the test
suites in the framework format.

The import functionality should be driven by an external table in order to support the different
formats of the test-template sheets. The table pairs the original columns with the target fields in
the framework suite.

Capture-facility must be integrated into the framework. It must be possible to generate not
only a script for later automation, but also some kind of recording (screen-shot or film) that a
developer can view without needing the expensive capture-replay tool license

The tester can decide if and when to capture the test and for how long. Starting and stopping
must be performed directly from the framework without having to call external tools.

The recording produced will be attached to the defect tracking item automatically.

The script produced is made available to the test automation team for further processing.

Integrate	SQL-scripts	that	extract	data	from	the	database	to	build	initial	conditions	or	compare	
values for test cases.

Importance

Critical: if testers don’t get this kind of support, there is no way
they will ever switch over

Note that the recording of the test was both by the test
execution tool and a video clip (see point below about what is
given to developers).

Critical: testers must be able to continue to use their current test
cases, although in the new suite format.

This step is also crucial to test automation, as it generates
nothing less than the structure for the future automated test
suites.

High: testers currently do without, but this feature could be a
great incentive to actually switch over to the framework.

This feature is also crucial for test automation: both the recorded
screen-shots (and film) and the captured scripts illustrate exactly
the test execution that we want to automate. These can be
attached to a defect item for the developer.

High: would enable testers to save the inserted data without
breaking the flow of test execution

Essential for test automation, because in this way the testers
would not only reveal the test case specifications but also deliver
the necessary data to create the test preconditions, the expected
results or both.

9Automation through the Back Door (by Supporting Manual Testing)

 The new manual features
The	first	 thing	 that	got	 implemented	was	a	 feature	 (written	 in	PLSQL)	 to	extract	 table	
contents from an Oracle database. For manual just as for automated testing this was a great
help because now one could create a specific condition, export it (with a recognizable
name) and use it (that is re-import the data in the database) every time a test case needed
such a condition. A typical example was to create partners with specific characteristics.
By doing this we were applying (again without noticing) the pattern MIX APPROACHES. It
suggests, among other things:

•	 For	every	task	use	the	tool	that	fits	best
•	 PREFER	FAMILIAR	SOLUTIONS:	if	possible	chose	tools	that	are	already	in	use	in
		 your	organization	and	that	are	well	known.	In	this	case	we	used	PLSQL	because	the
 development team was using it all the time
•	 AUTOMATE	WHAT’S	NEEDED:	decide	individually	for	each	application	if	it’s	better	to	
 use test automation, manual tests or a mixture of both. What we automated here
 was just a kind of utility but it proved extremely helpful for all kinds of tests

Then I implemented the manual testing features described in Table 2. Since, as usual, I
was adding these features in my free time, it took some months to get them all running.
Actually I did it piecemeal, adding new functions as they were needed. In this way we
could already give value even before everything was completed. This again means using
a pattern, TAKE SMALL STEPS. One of its suggestions is exactly this: In some cases it can
be most rewarding to do just some automation in order to support the testers right
away. This will help to produce much interest and support for a later extension of the
automation effort.

In this phase I had to select the RIGHT TOOLS to capture the scripts and to do recordings
of the tester’s actions. Since it was still a kind of experiment, I had to limit the choice to
freeware. The other important condition was that the tools had to offer a command line
interface so that they could be called from the framework

Last but not least I implemented the feature to migrate the spreadsheets to the framework
suite format. Having adjusted the import definition tables in just a couple of hours, the
transition was completed in less than a day for all the needed documents. From that
moment on the test cases had to be used and maintained in the framework. Now the
new manual test process could be deployed.

 Test execution with the new manual test
 process
After migration the test suites looked something like Figure 212 :

The test execution process now goes like this:
 1. A tester starts execution by selecting which test cases are to be performed.
 2. A window like Figure 3 pops up with the first (next) test case to be executed. Note
 that this window has been designed especially small in order to enable testers
 to see the application they are testing and the test specifications side by side.
 3. If the preconditions are not met, they must be set up and the tester has the
 possibility to export them to external files for later use. To make reference easier
 the files are automatically given names that contain the actual Test-ID. Note that
 this is useful to the tester but even more so for later test automation
 4. The tester starts the recording functionality (the tester can decide if he needs the
 recording for the particular test case. We gave the rule that this was mostly
 necessary only once for a family of test cases)
 5. The tester performs the manual test.
 6. Afterwards the tester can export the current state of the application. These files
 can then be used as input for subsequent test cases. And, as a useful side effect
 (from the automation point of view), they constitute the expected results that will
 be needed to check the actual results when the test is run next time (if the test has
 passed).

Figure 2

12Figures 2 and 3 are taken from my chapter in the book

10Automation through the Back Door (by Supporting Manual Testing)

 7. If the test case is completed without defects the tester checks that it’s OK () and
 goes on to the next test. The process continues from step 2.
 8. If the test case discovers a defect, then the tester can classify it as a failure ()
 and create a defect-item in the development process system to have it resolved.
 Available information is automatically attached to the item, also any recording, so
 that the tester has to step in only in exceptional cases (to fill in fields that can’t
 be filled out automatically and aren’t usually needed). Afterwards the tester
 can select to perform the next test and the process continues from step 2.
 9. The tester finishes the test, and the test results are displayed automatically.

 Automating the manual tests
As an example on how automation worked after the manual tests were executed with the
framework I want to describe how we set up near shore automation.

A couple of years ago we decided to try to outsource the development of our automation.
Since the team from Poland was new to our product, to the tools and to Command-Driven
Testing they had to stay at our Hamburg office for about 3 months to get trained. To
prepare their training one of the testers migrated a new set of test cases to the framework
(see above) and performed them all, exporting previous and resulting conditions. She also
recorded the tests as scripts and as videos. In this way the two new “colleagues” would get
as much information as possible regarding the application to be automated.

The training schedule was first to get to know the product, at least in the areas where they
were supposed to work. Then they were taught how to use the tools and the framework.
We gave them an overview of the various features, but they were supposed to learn the
details by doing (pattern GET TRAINING). They were also informed about the standards
they were supposed to follow (pattern SET STANDARDS).

Finally they could start with the automation work. Here are the steps that had to be
done:
1. The manual test suite was split up so that one guy would automate the first half of
 the test cases and the other one the second half
2. The captured scripts were used mainly to see what had to be done, together with
 the videos. A more experienced automator (one of us) could have created the
 DRIVER and DATA_TEMPLATE scripts for all the needed windows in one go, but in
 order to learn it was better for them to capture the single windows again (pattern
 SINGLE PAGE SCRIPTS). This was also because the GUI objects had to be mapped
 and it was easier to use the automatic mapping offered by the tool while recording
 (pattern OBJECT MAP)
3. The recorded scripts were converted to DRIVER and DATA_TEMPLATE scripts
4. The DATA_TEMPLATE scripts were copied to DATA-Scripts and following the
 instructions (text, recorded scripts or videos), they had to adapt the data accordingly.
5. The scripts to prepare the preconditions or to check the results were already
 available, they just had to insert the correct file names
6. In this way they could build up modular test cases. Once the first ones were
 developed, creating others was much faster as more and more of the building
 blocks were already available
7. Finally they had to test each test case before going on

Once they got the feeling for it they could work mostly alone so that we could spare our
testers time.

Still we had problems, but they originated mainly from the colleagues themselves

Figure 3

11Automation through the Back Door (by Supporting Manual Testing)

(INADEQUATE	TEAM)	and	at	the	end	that	also	killed	this	experiment.	One	of	the	two	had	
no real aptitude for development, and automation has lots to do with development. The
other was good, but incredibly slow so that we could do the automation in house in a
fraction of the time he needed. Since they would be paid by time and not by completed
test cases it was ultimately a no brainer to kill the experiment.

Still this example shows how valuable support of manual testing can be for test
automation

 Conclusion
To conclude I return to the use of patterns: We did a lot right, but if we had known about
patterns before, we could have been spared quite a lot of pain!

If you are interested in testing our patterns, just write a mail to me (srttgmb@yahoo.
com) or Dorothy Graham (info@dorothygraham.co.uk) and we will invite you to our Test
Automations Patterns Wiki. In return we would like you to write down your experiences
using them whether positive or not. The best contributions will be inserted in the future
book (of course acknowledging your merit)

Thank you

 References
Dorothy Graham and Mark Fewster (2012) Experiences of Test Automation, Case Studies
of Software Test Automation, Addison –Wesley ISBN 978-0-321-75406-6

Hans Buwalda, Dennis Janssen, Iris Pinkster (2002). Integrated Test Design and Automation
using the TestFrame Method. Addison-Wesley ISBN 0-201-73725-6

Elfriede Dustin (2002). Effective Software Testing. 50 Specific Ways to Improve Your
Testing. Addison Wesley ISBN 0-201-79429-2

Elfriede Dustin, Jeff Rashka, John Paul (1999). Automated Software Testing. Addison-
Wesley

ISBN 0-201-43287-0

Mark Fewster, Dorothy Graham (1999). Software Test Automation. Addison-Wesley
ISBN 0-201-33140-3

Seretta Gamba, Command-Driven Testing, A step beyond Key-Driven Testing. EuroSTAR
2005 TE7

Tim Koomen, Leo van der Alst, Bart Broekman, Michiel Vroon (2006). TMap Next for result-
driven testing. UTN Publishers ISBN (10) 90-72194-80-2

 Biography
Seretta Gamba started programming for her physics thesis back
in 1972 and found this kind of work so satisfying that she never
started a scientific career.

Instead she worked as an IT-specialist first in her home country
Italy and since more than thirty years in Germany. She has
experience in very different branches of IT such as furniture
warehousing, semiconductor manufacturing, automotive
process controlling and insurance. Presently she works full
time as developer, test manager and automation lead at Steria

Mummert ISS in Hamburg, Germany.

She has developed Command-Driven Testing and the framework ISSTestStation.
Seretta Gamba has spoken at different international conferences (EuroSTAR; TestKit;
Belgian	Testing	Days;	IQNITE)	.

Steria Mummert ISS GmbH, Hans-Henny-Jahnn-Weg 29, 22085 Hamburg, Germany
seretta.gamba@steria-mummert-iss.de

Join the EuroSTAR Community…
Access the latest testing news! Our Community strives to provide test professionals with resources that prove beneficial
to their day-to-day roles. These resources include catalogues of free on-demand webinars, ebooks, case studies, videos,

presentations from past conferences and much more...

Follow us on Twitter @esconfs
Remember to use our hash tag #esconfs when tweeting
about EuroSTAR 2013!

Become a fan of EuroSTAR on Facebook

Join our LinkedIn Group

Add us to your circles

 Contribute to the Blog

 Check out our free Webinar Archive

 Download our latest eBook

 Download our latest Case Study

w w w. e u r o s t a r c o n f e r e n c e s . c o m

https://twitter.com/esconfs
http://www.eurostarconferences.com/community/member/case-studies
https://www.facebook.com/EuroSTARSoftwareTestingConference
http://www.linkedin.com/groups/EuroSTAR-Software-Testing-Community-1798888
https://plus.google.com/113080904826107701288/po
http://www.eurostarconferences.com/blog
http://www.eurostarconferences.com/community/member/webinar-archive
http://www.eurostarconferences.com/community/member/ebook-library

