

Case Study: A SQL Server

DBA Improves Customer

Application Service
This paper documents how a DBA used a performance tool, Confio Ignite 8,

to find and resolve database problems that directly impacted

customer service.

What is the final cost of product development, if in the end your customers can’t get their

work out of your web based product fast enough? This report explains the pain points of a

company whose database was designed ‘on the fly’ by the application developers. This isn’t

such a bad thing, unless these developers don’t have a solid understanding of how databases

work and how to get a fair level of performance out of them.

How a DBA used Confio’s Ignite 8 to Resolve what was Keeping the Customers Waiting

Customers Were Calling for Product Support 1

Case Study: A SQL

Server DBA Improves

Customer Application

Service
This paper documents how a DBA used a performance

tool, Confio Ignite 8, to find and resolve database

problems that directly impacted customer service.

Customers Were Calling for Product

Support
The Product Development manager decided that something

had to be done. Customers were concerned and the business unit

leaders were getting nervous at the reports about how certain

features of the companies web application was taking too long to

process their reports and disconnecting them from their active web

sessions. Why are these problems coming to light now after the

application has been online for over three (3) years?

 The company interviewed me twice as to what I could do

help them. After a thoroughly impressive display of SQL Server

knowledge I was brought in to assist them to get this situation

under control if possible. The system administrators were out of

options. They’d thrown enterprise level SAN hardware at the

problem. Still, they were having trouble with customers being

dropped from their web sessions. Then it happened. Developers

were tasked to discover why the application was behaving this

way. The developers had exhausted their research into their code

How Proper

Database

Indexes Saved

the Day!

By examining the index

structure of a table that

was involved in a multi-

join query, we were able

to trim 126 seconds off of

the processing time of a

query in a production

database! In a one hour

period this query came

through the production

database over ten times.

That’s seventeen (17)

plus minutes of

customers waiting to get

their data back from the

database. These days

it’s hard to keep a web-

user on the page for

more than a few

seconds. It’s needless to

say that customers will

detect a substantial

speed increase in getting

their data processed and

be delighted to continue

to use the company’s

online product offerings.

How a DBA used Confio’s Ignite 8 to Resolve what was Keeping the Customers Waiting

Index Evaluation and Creation 2

and decided that all these dynamically generated SQL statements were necessary for the product to

function. Then they opened up Microsoft’s SQL Server Management Studio (SSMS) for 2005 and turned

on the Database Tuning Wizard. Right away the reports started to be generated about what indexes

were missing from their tables based on the statistics kept by the server. Well, a production change

request (CR) was approved and the create button was pressed to generate all these database index

objects. Oops.

Index Evaluation and Creation
Being able to adjust any of the application code was out of the question for financial and time

reasons. The application was live and there wasn’t time or money or recode the application. So we

were left with optimizing the database to process these queries more efficiently as our only recourse.

So, now that the customer base had grown to a point where these performance issues were presenting

themselves, it was time to examine the performance of a subset of all the production SQL queries. We

needed to determine what index configuration would best help the end user (customer) experience.

This section will illustrate the issues that led to a bad user experience. There were many variables to

consider when deciding how to address these database performance issues.

1) How do we discover where to start?

2) What methods and tools can be used to detect the problems and document the performance

observations?

3) How can the proposed solutions prove that it made a difference in the end user experience?

4) Is there a way to test the solutions using a production load level?

 I recalled that a couple years ago that I was at an SQL Saturday event and talked with the sales

reps for a software product that may help in this situation. It was a database wait time software

package that was able to display which queries were taking the longest to process. This would be the

starting point of the investigation phase.

 Being able to use this software tool and translate that data into an action plan proved to be the

point where the tires met the road. Having once read that being a Database Administrator (DBA) was

to be a scientist. Document how the database is running now (getting a baseline), develop a hypothesis

to improve that performance using proven techniques, test out that hypothesis and document if your

database is running better than before. It was time to go to work.

There have been many books written by authors more knowledgeable than myself when it

comes to database indexing and how SQL Server 2005 and 2008 process queries. My personal library is

filled with many of them and I owe a debt of gratitude to those fine people for sharing their knowledge

and experience with me through their works. There are some basic index creation rules that have been

documented in many of these publications. We’ll touch on some of these as we move through this

performance tuning experience.

How a DBA used Confio’s Ignite 8 to Resolve what was Keeping the Customers Waiting

Getting Pointed in the Right Direction 3

Getting Pointed in the Right Direction
 The client created a workstation in the production area to be used as an SQL Administrators

box. After installing an instance of SQL Server 2008 and verified connectivity to all the production

database servers the environment was ready for the discovery process. Installing a trial version of

Confio’s SQL Ignite 8 and set it up to collect data from all my production servers allowed for the

comparison of current performance against historical performance data, per query. After running for a

few hours the gathered data began to point to where the query bottlenecks were. In allowing the tool to

run for a day and collect data on the SQL Server performance, a report on the top 5 SQL Queries that

were taking the longest to run was presented. The figure below illustrates the overall wait time in

minutes during the initial phase of the database tuning efforts. Examining October 19 thru 21 there are

large values (118 to 158) for the total wait time on this server. The light blue bars represent the query

labeled as UPDATE TimeWorkingPunch ID and had an average running time of 0.004795. That’s a nice

value to have available to me. On October 21 the system executed this query 1.1 million times. Since

this query is shown as having the largest bars in my chart (from October 19 - 21) as having the most

wait time we’ll explore this query further.

The goal of this work is to improve the end users experience, basically to make the database run

faster. After following a process of table design discovery, index creation trial and error we were able

to achieve an index structure that eliminated all of the Database Tuning Advisor (DTA seen as

_dta_Objectname in SSMS) objects in favor of this new structure on a single table in the database. That

code was implemented as a Change Request (CR) on the evening of October 21. The chart below will

How a DBA used Confio’s Ignite 8 to Resolve what was Keeping the Customers Waiting

Getting Pointed in the Right Direction 4

document the overall database performance from October 22 on. Also please note that the next day had

a higher volume of this query hitting the database for a total of 1.3 million times as compared to the 11

million the previous day. By tuning this one table we took the overall database wait time from 2:38:08

per day down to 51:11. Fifty-one minutes from over two (2) hours. That one query had reduced the end

users wait time from one hour and thirty-four minutes down to five minutes - for the whole day -

running 1.3 million times! This was a significant improvement that needed to be illustrated to the

product development manager.

Included here is an overview of the results obtained by altering the index structure of the table that this

query was executing against. Please also note that there was a total reduction of 50% in overall end user

wait times on this query.

How a DBA used Confio’s Ignite 8 to Resolve what was Keeping the Customers Waiting

Success Comes with a Price 5

Success Comes with a Price
The following Monday product support gets a call from a customer who states that they can’t

login to the web application. After much research it was discovered that the memory available to SQL

Server had been completely taken up by the Buffer Manager. There were no free pages in memory for

new queries to be processed. Queries were being processed much faster into the server, new query

plans were being created and the server had not been configured properly for proper memory

management. Needless to say that this memory issue was just hiding in the background masked by the

slow executing queries keeping the database bogged down. Now that the database had new indexes to

process the queries on this table data throughput was tripled (documented with an SQL load testing

tool).

The Discovery Process
The Ignite tool allows me to give readable names to queries that I want to work with. The

charting ability allowed me to document the performance of the database both before and after the CR

was implemented. This one chart alone made the management executives extremely happy.

Let’s look at the specifics of the top offending query. Ignite allows me to write notes about the

query to help me remember specifics about it. See the image below.

How a DBA used Confio’s Ignite 8 to Resolve what was Keeping the Customers Waiting

The Discovery Process 6

Here is a top level view of the process used to discover a unique set of queries that we’ll use to rebuild

the index structure on the effected table:

1) Because the SQL Server Profiler application can impact performance – run a few different traces

throughout the day for 10 to 15 seconds each.

2) Save the trace data inside many different SQL tables on a remote admin server.

3) SELECT out from the TEXTDATA field the queries that contain the table name you want to

work on.

4) Use a UNION command to aggregate all the queries into a single result set.

5) Save the result set as a CSV file (right clicking inside the result set will give you this option).

6) Import the CSV file into an MS Excel spreadsheet, and then sort it.

7) Remove the queries that are duplicated (the data values that are entered as Where clause filters

will be different but the fields of the query will be in the same order. That’s why we sorted the

input).

How a DBA used Confio’s Ignite 8 to Resolve what was Keeping the Customers Waiting

The Discovery Process 7

You now have a list/set of unique queries that you’ll take one at a time and evaluate. This is your set of

queries to use while building a new Index structure.

An interesting side effect of this process is that as you progress further down the list of queries,

building the new index structures, you’ll find that the execution times of the queries near the beginning

of this process has changed. With the introduction of each new Index we’ve added overhead to the

processes that SQL Server uses to keep all the indexes current. Each Update, Insert and Delete T-SQL

statement will affect all the indexes that have been built on those fields. Best practices for how many

indexes to be built, per table; in an Online Transactional Processing (OLTP) is not a hard and fast

number. Generally, a single table should have no more than ten (10) indexes. That figure is a matter for

a discussion on a different paper, and can be researched by a quick online search of the topic. Needless

to say that the more indexes you introduce into a table structure, the more overhead you incur for SQL

Server to handle.

Here is a sample of the code that was used to pull in all trace data from numerous traces taken

at different times of the day.

How a DBA used Confio’s Ignite 8 to Resolve what was Keeping the Customers Waiting

The Discovery Process 8

You can also perform a sort by the Duration field to get an ordered list of the longest running

queries first. The query was found in the Excel result set and now we start looking at this query to

determine how to improve its performance. We start by looking at the existing table structure and

questioning the decisions that were made to establish a clustered index.

After reviewing the query list it can be seen that many of the queries are being filtered on the

WorkingPunchID field in the WHERE clause. This leads to an exploratory mode and testing of how a

new clustered index on that field would perform. Now the table will be ordered in a way that will

make this field easier for the database to process. We’ll test that theory soon.

select TextData , Duration from dbo.TRC1 where TextData like '%TimeWorkingPunch%'

union all

select TextData , Duration from dbo. TRC2 where TextData like '% TimeWorkingPunch%'

union all

select TextData , Duration from dbo. TRC3 where TextData like '% TimeWorkingPunch%’

How a DBA used Confio’s Ignite 8 to Resolve what was Keeping the Customers Waiting

 Turn on the SQL Server Display Execution Plan

Option 9

Turn on the SQL Server Display Execution Plan Option
Now we’re ready to start running queries and evaluating runtimes against our new structures

as compared to the version currently in production. We’ll turn on the Display Execution Plan option so

we can do our comparisons. Select this button inside SSMS to get a tab that shows the Execution Plan of

your query.

Run your query and pay attention to the Subtree cost entry at the beginning of the execution

plan as you read it from left to right.

Dissecting the Query

 Now we get to compare how the production copy of the database table will perform as

compared to the new table structure with its new indexes. We want to start at the WHERE clause of the

query. The tables listed in any joins are also to be evaluated, but for this example UPDATE statement

How a DBA used Confio’s Ignite 8 to Resolve what was Keeping the Customers Waiting

 Turn on the SQL Server Display Execution Plan

Option 10

we’ll stick to the WHERE clause.

The Primary Key (PK) that we established to build our clustered index on in our testing

database is being used to identify the row to be updated.

How a DBA used Confio’s Ignite 8 to Resolve what was Keeping the Customers Waiting

What happens now? Repeat! 11

The new structure generates a run time

of:

This small change in runtime (the Delta value above), when executed over a million times resulted in a

significant reduction in SQL server wait time for the end user. This became the template that was used

to further detect and tune the database index structures.

What happens now? Repeat!
 After documenting the success of this process to upper management, it was time to revisit the

Ignite tool to see what new queries were ‘bubbling up’ towards the top of the wait time matrix. A query

became exposed that had somehow evaded the initial trace capture of the queries hitting this table.

How a DBA used Confio’s Ignite 8 to Resolve what was Keeping the Customers Waiting

What happens now? Repeat! 12

How a DBA used Confio’s Ignite 8 to Resolve what was Keeping the Customers Waiting

SSMS Offers Us Some Help 13

By this time the new index structures have been in production for a week or so and response

time is improving. The lack of customer support calls meant that our changes had performed as

expected. The new query that was now to be evaluated had an astonishing result when it’s runtime

was tested in the old production database. This query took 129.476 seconds to execute. Also, please

make a note of the Missing Index hint (in green) that SSMS is showing. Let’s first take a look at

that.

SSMS Offers Us Some Help
We know that we’ve already optimized this table during our initial investigation and CR

changes. Is it possible that this index hint can be integrated into the new Index structure without

adding a new index? Here’s the full index

hint.

How a DBA used Confio’s Ignite 8 to Resolve what was Keeping the Customers Waiting

SSMS Offers Us Some Help 14

Here is our current index that is built on the filtered field

company_id.

Since we already have an index on the company_id field we move our attention to the SELECT

statement. Here we see the requested field as: SELECT MAX(CreatedTime) as LastActive. The field

CreatedTime is not listed in our INCLUDE part of the index. So we add this field into the index

creation script. After dropping the original index and rebuilding the index with the new field it’s time

to test our performance.

How a DBA used Confio’s Ignite 8 to Resolve what was Keeping the Customers Waiting

The End Game 15

The End Game
 The test run gives me back an astounding result as a run time for this new index

structure:

Conclusion
 After spending many hours of testing and tuning the index structures the final evaluation of

this queries runtime offers a positive

result.

How a DBA used Confio’s Ignite 8 to Resolve what was Keeping the Customers Waiting

About the Author 16

We then wanted to see this complete set of queries (in the Excel CSV file) run under a simulated

load, to see how the proposed indexes would perform. Below is shown two reports from this tool. The

first image reflects many important performance metrics against a copy of our production database.

The second image is a report when the tool was pointed with the same workload files against the

modified ‘Testing’ database.. All of the unique queries (over 260 of them) were executed in a load

simulating 100 users. The final results were rewarding and left a warm fuzzy feeling inside.

This image displays a final verification that the proposed index optimizations will be an

improvement in database performance and in query response time

About the Author
Dale Cunningham is a Sr. Database Administrator and has worked for enterprises both large

and small. As a sole DBA for Intuit’s CustomerCentral databases which supported the products of

Quicken Online (now consolidated with the Mint application that was acquired by Intuit), QuickBooks

Online, Quicken Desktop and Finance Works he was provided an environment of very large OLTP

transactions per second and a 1.6 TB database to manage in a clustered environment. Many other

companies have provided experience in getting the most performance as possible from SQL Server

2000, 2005 and 2008.

Dale has been involved with computers since 1984. The IBM XT model was the hook and the IT

bug bite never healed. Beginning a degree in computer science at FIU with an AA degree from

Broward Community College in hand, Data structures, C++ and Java became mandatory languages to

learn. Then it all changed when a database class ignited the fire of what this wonderful invention from

Sybase and eventually Microsoft could do. SQL server became integrated into every website he built in

classic ASP 3, VBScript and JavaScript.

Along the way many people have participated in the development of Dale as a DBA, mainly the

family members that endured the numerous hours he spent reading, testing and developing SQL

scripts and ASP code. Dale achieved the MCDBA certification from Microsoft for SQL Server 2000 and

How a DBA used Confio’s Ignite 8 to Resolve what was Keeping the Customers Waiting

 17

is looking forward to becoming certified in SQL Server 2008. Thanks to Jack Martin, Steven Benjamin,

Rafael van Dyke, TJay Belt and Rick Morelan of the Joes to Pros series, for jobs, friendship and

additional training.

Thanks to Confio Software and Microsoft for supplying the software tools to make this project

report possible – and easier!

Download a free trial of Confio Ignite from www.confio.com .

http://www.confio.com/

