@ﬂ&ﬂ'ﬁﬁﬁmm design. develop. deliver.

Case Study: A SQL Server
DBA Improves Customer
Application Service

This paper documents how a DBA used a performance tool, Confio Ignite 8,
to find and resolve database problems that directly impacted

customer service.

What is the final cost of product development, if in the end your customers can’t get their
work out of your web based product fast enough? This report explains the pain points of a
company whose database was designed ‘on the fly’ by the application developers. Thisisn’t
such a bad thing, unless these developers don’t have a solid understanding of how databases

work and how to get a fair level of performance out of them.

How a DBA used Confio’s Ignite 8 to Resolve what was Keeping the Customers Waiting

Case Study: A SQL
Server DBA Improves
Customer Application
Service

This paper documents how a DBA used a performance
tool, Confio Ignite 8, to find and resolve database

problems that directly impacted customer service.

Customers Were Calling for Product
Support

The Product Development manager decided that something
had to be done. Customers were concerned and the business unit
leaders were getting nervous at the reports about how certain
features of the companies web application was taking too long to
process their reports and disconnecting them from their active web
sessions. Why are these problems coming to light now after the

application has been online for over three (3) years?

The company interviewed me twice as to what I could do
help them. After a thoroughly impressive display of SQL Server
knowledge I was brought in to assist them to get this situation
under control if possible. The system administrators were out of
options. They’d thrown enterprise level SAN hardware at the
problem. Still, they were having trouble with customers being
dropped from their web sessions. Then it happened. Developers
were tasked to discover why the application was behaving this
way. The developers had exhausted their research into their code

Customers Were Calling for Product Support * 1

How Proper
Datfabase
Indexes Saved
the Day!

By examining the index
structure of a table that
was involved in a multi-
join query, we were able
to trim 126 seconds off of
the processing time of a
query in a production
database! In a one hour
period this query came
through the production
database over ten times.
That's seventeen (17)
plus minutes of
customers waiting to get
their data back from the
database. These days
it’s hard to keep a web-
user on the page for
more than a few
seconds. It’s needless to
say that customers will
detect a substantial
speed increase in getting
their data processed and
be delighted to continue
to use the company’s

online product offerings.

@ sunshinesoftware

How a DBA used Confio’s Ignite 8 to Resolve what was Keeping the Customers Waiting

and decided that all these dynamically generated SQL statements were necessary for the product to
function. Then they opened up Microsoft’s SQL Server Management Studio (SSMS) for 2005 and turned
on the Database Tuning Wizard. Right away the reports started to be generated about what indexes
were missing from their tables based on the statistics kept by the server. Well, a production change
request (CR) was approved and the create button was pressed to generate all these database index
objects. Oops.

Index Evaluation and Creation

Being able to adjust any of the application code was out of the question for financial and time
reasons. The application was live and there wasn’t time or money or recode the application. So we
were left with optimizing the database to process these queries more efficiently as our only recourse.
So, now that the customer base had grown to a point where these performance issues were presenting
themselves, it was time to examine the performance of a subset of all the production SQL queries. We
needed to determine what index configuration would best help the end user (customer) experience.
This section will illustrate the issues that led to a bad user experience. There were many variables to

consider when deciding how to address these database performance issues.

1) How do we discover where to start?

2) What methods and tools can be used to detect the problems and document the performance
observations?

3) How can the proposed solutions prove that it made a difference in the end user experience?

4) Is there a way to test the solutions using a production load level?

I recalled that a couple years ago that I was at an SQL Saturday event and talked with the sales
reps for a software product that may help in this situation. It was a database wait time software
package that was able to display which queries were taking the longest to process. This would be the

starting point of the investigation phase.

Being able to use this software tool and translate that data into an action plan proved to be the
point where the tires met the road. Having once read that being a Database Administrator (DBA) was
to be a scientist. Document how the database is running now (getting a baseline), develop a hypothesis
to improve that performance using proven techniques, test out that hypothesis and document if your

database is running better than before. It was time to go to work.

There have been many books written by authors more knowledgeable than myself when it
comes to database indexing and how SQL Server 2005 and 2008 process queries. My personal library is
filled with many of them and I owe a debt of gratitude to those fine people for sharing their knowledge
and experience with me through their works. There are some basic index creation rules that have been
documented in many of these publications. We'll touch on some of these as we move through this

performance tuning experience.

Index Evaluation and Creation ® 2 (_&, sunshinesoftware

How a DBA used Confio’s Ignite 8 to Resolve what was Keeping the Customers Waiting

Getting Pointed in the Right Direction

The client created a workstation in the production area to be used as an SQL Administrators
box. After installing an instance of SQL Server 2008 and verified connectivity to all the production
database servers the environment was ready for the discovery process. Installing a trial version of
Confio’s SQL Ignite 8 and set it up to collect data from all my production servers allowed for the
comparison of current performance against historical performance data, per query. After running for a
few hours the gathered data began to point to where the query bottlenecks were. In allowing the tool to
run for a day and collect data on the SQL Server performance, a report on the top 5 SQL Queries that
were taking the longest to run was presented. The figure below illustrates the overall wait time in
minutes during the initial phase of the database tuning efforts. Examining October 19 thru 21 there are
large values (118 to 158) for the total wait time on this server. The light blue bars represent the query
labeled as UPDATE TimeWorkingPunch ID and had an average running time of 0.004795. That’s a nice
value to have available to me. On October 21 the system executed this query 1.1 million times. Since
this query is shown as having the largest bars in my chart (from October 19 - 21) as having the most

wait time we’ll explore this query further.

| save gaweAs Edit EmailRepor

Top 5 SQL Statements | QSSCONGTFBD1 | October 19, 2010 to November 3, 2010
Selected Days: Monday,Tuesday,Wednesday,Thursday,Friday
m Update TimeWorkingPunch ID

180
Thursday - October 21, 2010 Executed 1.1 Insert Into TimeWorkingPunch
1401 SQL Name Update TimeWorkingPunch 1D million times B UPDATE TimeCard 55 Variables
" Wait Time 1:34:40 (hhomm:ss) B UpDate TWP Set PunchOrderType
] Total Wait Time for Day 2:38:08 (hhmm:ss) m SPinsert into TimeWorkingPunch
2 100 % of Total Wait Time 60%
E: - Average (seconds) 0.004795 P
= Executions 1,184,460
60 Looks to run pretty fast
il SQL Text
UPDATE [timeWorkingPunch] set [inout_id] = @1 [inpunch_dt]
20 - = @2,[shift_id] = @3 WHERE [workingpunch_id]=@4 =
0 4
Oct19 Oct2 Oct22 Oct25 Oct26 Oct27 Oct28 Oct29 Nov Nov 2 Nov 3
Show Full SQL Text

We match the colors of the largest bars
to the Queries listed on the right side

Description: We can see that the effects of CR188 applied on Oct22 and CR192 applied on Nov2 have reduced customer wait time by
over

The goal of this work is to improve the end users experience, basically to make the database run
faster. After following a process of table design discovery, index creation trial and error we were able
to achieve an index structure that eliminated all of the Database Tuning Advisor (DTA seen as
_dta_Objectname in SSMS) objects in favor of this new structure on a single table in the database. That
code was implemented as a Change Request (CR) on the evening of October 21. The chart below will

@ sunshinesoftware

Getting Pointed in the Right Direction ¢ 3

ignited

CONFIO®

How a DBA used Confio’s Ignite 8 to Resolve what was Keeping the Customers Waiting

document the overall database performance from October 22 on. Also please note that the next day had
a higher volume of this query hitting the database for a total of 1.3 million times as compared to the 11
million the previous day. By tuning this one table we took the overall database wait time from 2:38:08
per day down to 51:11. Fifty-one minutes from over two (2) hours. That one query had reduced the end
users wait time from one hour and thirty-four minutes down to five minutes - for the whole day -
running 1.3 million times! This was a significant improvement that needed to be illustrated to the

product development manager.

Save SaveAs Edit Email Report

Top 5 SQL Statements | QSSCONGTFBD1 | October 19,2010 to November 3, 2010
Selected Days: Monday,Tuesday,Wednesday,Thursday,Friday
W Update TimeWorkingPunch ID

1009 M Insert Into TimeWorkingPunch
140 + Friday - October 22, 2010 W UPDATE TimeCard 55 Variables
SOL Name Update TimeWorkingPunch ID M UpDate TWP Set PunchOrderType
120 - Wait Time 05:22 (mmiss) ® SPInsert into TimeWorkingPunch
sl Total Wait Time for Day 51:11 (mm:ss)
2 % of Total Wait Time 10%
—] =
£ ®0; Average (seconds) 0.00024 Even with 200K more
- Executions ’/1.340.353 exea]tions we've
We made it faster! 1.3 million executions reduced customer wait
40 - SOL Text ti
ime by almost 2 hours
UPDATE [timeWorkingPunch] set [inout_id] = @1,[inpunch_dt) dby ith timizi
20+ = @2,[shift_id] = @3 WHERE [workingpunch_idj=@4 per Gay with opuimizing
o) just this one query!
Oct19 Oct20 Oct21 Oc Oct25 Oct26 Oct27 Oct28 Oct29 Nov1 Nov 2 Nov 3

Show Full SQL Text

ignited

CONFIO*

Included here is an overview of the results obtained by altering the index structure of the table that this
query was executing against. Please also note that there was a total reduction of 50% in overall end user

wait times on this query.

| ([untimesefore [Runtimeaer FHNIS

Thursday - October 21, 2010 Friday - October 22, 2010
SQL Name Update TimeWorkingPunch ID SQL Name Update TimeWorkingPunch ID
Wait Time 1:34:40 (hh:mm:ss) Wait Time 05:22 (mm:ss)
Total Wait Time for Day 2:38:08 (hhomm:ss) Total Wait Time for Day 51:11 (mm:ss)
% of Total Wait Time 60% % of Total Wait Time 10%
Average (seconds) 0.004795 Average (seconds) 0.00024
Executions / 1,184,460 Executions / 1,340,353
Looks to run pretty fast We made it faster! 1.3 million executions
SQL Text SQOL Text
UPDATE [timeWorkingPunch] set (inout_id) = @1,[inpunch_dt) lf UPDATE [timeWorkingPunch] set [inout_id] = @1 [inpunch_dt)
= @2,[shift_id) = @3 WHERE [workingpunch_id}l=@4 = @2,[shif_id) = @3 WHERE [workingpunch_id}=@4

Getting Pointed in the Right Direction * 4 @ sunshinesoftware

How a DBA used Confio’s Ignite 8 to Resolve what was Keeping the Customers Waiting

Success Comes with a Price

The following Monday product support gets a call from a customer who states that they can’t
login to the web application. After much research it was discovered that the memory available to SQL
Server had been completely taken up by the Buffer Manager. There were no free pages in memory for
new queries to be processed. Queries were being processed much faster into the server, new query
plans were being created and the server had not been configured properly for proper memory
management. Needless to say that this memory issue was just hiding in the background masked by the
slow executing queries keeping the database bogged down. Now that the database had new indexes to
process the queries on this table data throughput was tripled (documented with an SQL load testing
tool).

The Discovery Process

The Ignite tool allows me to give readable names to queries that I want to work with. The
charting ability allowed me to document the performance of the database both before and after the CR

was implemented. This one chart alone made the management executives extremely happy.

SQL Name: Update TimeWorkingPunch ID

~Ignite see this statement many times

| Save SaveAs Edit EmailR and displays it as a paramerterized SQL Text
B - . tat p' tYfS P UPDATE ftimeWorkingPunch] set [inout_id] = @1 ,[inpunch_dt]
| PVCRCIMICHDL OIS ——> |- @2.[shif_id] = @3 WHERE [workingpunch_idl=@4

Top 5 SQL Statements | QSSCONGTFBD1 | Octobe
Selected Days: Monday,Tuesday,Wednes{Click to name this SQL Statement

W Update TimeWorkingPunch IDg
How did we reduce the wait time on this query? Did we ®insert Into TimeWorkingPunchh)
have to go into the application and change the code? ® UPDATE TimeCard 55 Variables

25 Nope. That option wasn't available. Did we optimize the =~ ™.eRate TWP SetPunchOrderType
3 F: 2 S m SPInsert into TimeWorkingPunch
query? Nope. That option wasn't available to us either.

i Lets take a look at how got SQL Server to treat this

g1 query differently / better. Mouse over the statement

60 - to see it in displayed as a
, tool tip box. Click the

statement to name it and
1 = write notes about this
o0l statement.

Oct19 Oct20 Oct21 Oct22 Oct25 Oct26 Oct27 Oct28 Oct29 Nov1 Nov 2 Nov 3
Show Full SQL Text

Minutes

&

[5]
o

ignite8

CONFIO®

Let’s look at the specifics of the top offending query. Ignite allows me to write notes about the

query to help me remember specifics about it. See the image below.

Success Comes with a Price ¢ 5 ‘3’ sunshinesoftware

How a DBA used Confio’s Ignite 8 to Resolve what was Keeping the Customers Waiting

SQL Name

Hash: 4537509357

Name: [Update TimeWorkingPunch ID

Description:

UPDATE [timeWorkingPunch)
SET [inout_id) = @1 finpunch_dt] = @2, [shift_id) = @3
WHERE [workingpunch_idj=@4

The write log Wait on this query is causing significant blocking. This query ./ table is candidate number #1 for optimization =

2|
SQL Text:
(81 int,B2 varchar (8000),83 int,B84 int) =
UPDATE [timeWorkingPunch]
SET [inout_id] = @1, [inpunch_dt]
= @2, [shift_id]
= 83
WHERE [workingpunch id]=@4
-:1

ignite8 escs

CONFIO®

Here is a top level view of the process used to discover a unique set of queries that we’ll use to rebuild

the index structure on the effected table:

1) Because the SQL Server Profiler application can impact performance — run a few different traces

throughout the day for 10 to 15 seconds each.

2) Save the trace data inside many different SQL tables on a remote admin server.

3) SELECT out from the TEXTDATA field the queries that contain the table name you want to

work on.

4) Use a UNION command to aggregate all the queries into a single result set.

5) Save the result set as a CSV file (right clicking inside the result set will give you this option).

6) Import the CSV file into an MS Excel spreadsheet, and then sort it.

7) Remove the queries that are duplicated (the data values that are entered as Where clause filters

will be different but the fields of the query will be in the same order. That's why we sorted the

input).

The Discovery Process ® 6 “i sunshinesoftware

How a DBA used Confio’s Ignite 8 to Resolve what was Keeping the Customers Waiting

You now have a list/set of unique queries that you'll take one at a time and evaluate. This is your set of

SELECT email FROM empMain WHERE company id=1607 AND active yn=1 AND employee id=99547

SELECT emp1.lastname +'.' + emp1.firstname AS Name, emp1.department_id, ISNULL(emp2.email, 'None') AS SupervisorEmail FROM empMain
emp1 LEFT OUTER JOIN empMain emp2 ON emp1.supervisor_id = emp2.employee_id WHERE emp1.employee_id = 109380

SELECT
empHolidayList.holidaylist_id,empHolidayList holidayhours, tblHolidayList. holidayprobation.tbiHolidayList holidayprobationhours. tbiHolidayList.holidayprob
ationOT tbIHolidayList holidayprobationyear tbiHolidayList holidayplusworked_yn.tbiHolidayList.holidaymatchworked.tbiHolidayList holidayuseShiftPremiu
m.tbiHolidayList holidayot_yn.tbiHolidayList.holidayaccrual_yn.tblHolidayList.Max HolidayHours.tbIHolidayList.countholidayhourspremium,tbiHolidayList.h
olidayhoursendofday.tblHolidayList.holidaygenerateHolidayForUnscheduled. tbiStoreHolidayList.holiday_dt, tbiStoreHolidayList.shiftprior_yn.tbiStoreHolida
yList.shiftafter_yn.tbiStoreHolidayList shiftpriorNumber. tblStoreHolidayList.shiftafterNumber, tbiStore HolidayList birthday AS
birthdaybit.tbiHolidayList.premium_id,tbIHolidayList. department_id.tbIHolidayList. GenerateHolidayHours. tbIHolidayList.absence_id,empMain.birthday.seni
orityProbation senioritydate FROM empHolidayList INNER JOIN tbiHolidayList ON empHolidayList.holidaylist id=tblHolidayList.holidaylist id INNER
JOIN tbiStoreHolidayList ON tbiHolidayList.holidayvlist id=tbiStoreHolidayList.holidaylist id INNER JOIN empMain ON empMain.employee id =
empHolidayList.emplovee id WHERE ((holiday dt BETWEEN '10/10/2010' AND '10/16/2010') OR (tbIStoreHolidayList.birthday = 1)) AND
empHolidayList. emplovee id=95175

SELECT employee_id, lastname +'.' + firstname + ' ' + LEFT(middlename. 1) AS EmploveeName FROM empMain WHERE (active_vn = 1) AND

SELECT employee id. lastname +'.' + firstname +'' + LEFT(middiename, 1) AS EmployeeName FROM empMain WHERE (empMain.company _id =
425) AND employee id=21825 AND (active_yn =1) AND employee id<>21857 ORDER BY lastname, firstname, middlename

SELECT employee _id.active_vn FROM empMain WHERE cardnumber = 100113 AND company_id = 340

SELECT emplovee id.job_id FROM empMain WHERE cardnumber = 19 AND company_id = 293 AND active_vn =1

An interesting side effect of this process is that as you progress further down the list of queries,
building the new index structures, you'll find that the execution times of the queries near the beginning
of this process has changed. With the introduction of each new Index we’ve added overhead to the
processes that SQL Server uses to keep all the indexes current. Each Update, Insert and Delete T-SQL
statement will affect all the indexes that have been built on those fields. Best practices for how many
indexes to be built, per table; in an Online Transactional Processing (OLTP) is not a hard and fast
number. Generally, a single table should have no more than ten (10) indexes. That figure is a matter for
a discussion on a different paper, and can be researched by a quick online search of the topic. Needless
to say that the more indexes you introduce into a table structure, the more overhead you incur for SQL

Server to handle.

Here is a sample of the code that was used to pull in all trace data from numerous traces taken

at different times of the day.

The Discovery Process * 7 @ sunshinesoftware

How a DBA used Confio’s Ignite 8 to Resolve what was Keeping the Customers Waiting

select TextData , Duration from dbo. TRC1 where TextData like '%TimeWorkingPunch%'

union all

select TextData , Duration from dbo. TRC2 where TextData like '% TimeWorkingPunch%'

union all

select TextData , Duration from dbo. TRC3 where TextData like '% TimeWorkingPunch%’

You can also perform a sort by the Duration field to get an ordered list of the longest running
queries first. The query was found in the Excel result set and now we start looking at this query to
determine how to improve its performance. We start by looking at the existing table structure and

questioning the decisions that were made to establish a clustered index.

()

o

|

= 1 dbotimeWorkingPunch -
[Columns
= [Keys

@ [23 Constraints
@ [Triggers
= [Indexes

@ [Statistics
@ 1 dbo.timeWorkingPunchForecast
1 dbo.userEmployeeView
@ 71 dbo.userinterface
@ [dbo.userLogin i_|

? PK_timeWorkingPunch

1 _dta_index_timeWorkingPunch_5_11
;4 _dta_index_timeWorkingPunch_8_11
sh ClockDownload (Non-Unique, Non-
;i department (Non-Unique, Non-Clu
;i IX_AutoJoblD (Non-Unique, Non-Cl
;i IXJob (Non-Unique, Non-Clusterec
i IX_ParentlD (Non-Unique, Non-Clus
& PK_timeWorkingPunch (Unique, No
sh timeWorkingPunchl (Clusteg)

& timeWorkingPunch31 (Non-Uhique

4 Fiter
2 Fragmentation
& Bdended Properies

How did these

fields get picked
torepresentthe ___ i 5
clustered index?

The Clustered Index IS the table! Only 1 is allowed. Why? A clustered index is a special type of index
that reorders the way records in the table are physically stored. Therefore table can have only one
clustered index. The leaf nodes of a clustered index contain the data pages

Table name: time WorkingPunch :
Index name: timeWorkingPunch1
index type: [Custered -
] Unique
Index key columns:

Name Sort Order Data Type Siz

After reviewing the query list it can be seen that many of the queries are being filtered on the
WorkingPunchlID field in the WHERE clause. This leads to an exploratory mode and testing of how a
new clustered index on that field would perform. Now the table will be ordered in a way that will

make this field easier for the database to process. We'll test that theory soon.

= [dbo.timeWorkingPunch

¢ workingpunch_id (PK, int, not null)
=] company_id (int, not null)

(2] user_id (int, not null)

=] employee_id (int, not null)

=] rawpunch_id (int, not null)

[Z] clockdownload_id (int, not null)
[Z] workingpunch_ts (datetime, not nul
] inpunch_dt (datetime, not null)

21 inout id (int. not null

‘\\

WorkingPunch_ID has correctly been setup as a Primary Key(PK). This an
Autolncrementing field that assures that the table has one and only one value
for this key within the whole table. This makes the field have a LOW
selectivity. This makes the values in this field very easy to find

The Discovery Process * 8 @ sunshinesoftware

How a DBA used Confio’s Ignite 8 to Resolve what was Keeping the Customers Waiting

Turn on the SQL Server Display Execution Plan Option

Now we’re ready to start running queries and evaluating runtimes against our new structures
as compared to the version currently in production. We’ll turn on the Display Execution Plan option so
we can do our comparisons. Select this button inside SSMS to get a tab that shows the Execution Plan of

your query.

File Edit View Query Project Debug Tools Window Community Help
DNewQuey || BB DD S HS E

% | Qqest3_TEST - Y Becute b ® v 33 @[] B9 | GA[EIED | = 2 (A
Object Bxp.. v & X || SQLQuery5.sql - ...cunningham (53))" | Object Explorer D A
Connect~ | 43 1!

v

@ 1 dbo.timeVeri ﬂ

=

4;.~r

Include Actual Execution Planl

) UPDATE timeWorkingPunch
1 = ana = = -

[

Run your query and pay attention to the Subtree cost entry at the beginning of the execution

plan as you read it from left to right.

Paylocity v ¥ Execute b v iy @E} g——’J"‘" @@@ = |3FEE A.aj
fuv & X | 5QLQueryS.sql - ..cunningham (53))° | Object Explorer Details |
;o 1|

2{7 UPDATE timeWorkingPunch

sameVerig 3| SET inout id = 1, inpunch dt = '10/12/2010', shift id = 1977
rtimeWo 4 | WHERE workingpunch id = 18679193 -
vtimeWo 5 [=
ruserEmg 6i
nuserinte —— =
ruserLog L,‘) Messages | 3 Bxecionplan | —
ruserPref Query 1: Query cost (relative to the batch): 100%
ruserReq UPDATE ([timeWorkingPunch] set [inout_id] = @1, [inpunch_dt] = @2, [shift_id] = @3 WHERE [workingpunch_id]=84
nuserReq A
ruserReq l’ﬁj l.ﬁ"l m j 5{:
nuserSup UPDATE |§ Clustered Index Update | Compute Scalar | Top . index Seek (NonClusvezed)
nuserSup Cost: 97 & Cost: 0 & Cost: 0 & x::mﬁo:k;nqp\g::.):]‘.g?ii_umdo:hnq?.,.
rverifylo ‘
WSHan¢ UPDATE
ms Cached plan size 488
nmability Degree of Paralleli 1
Broker Estii d Operator Cost 0 (0%)
Estimated Subtree Cost 0.103293
; Estimated Number of Rows 1
sisgiagra' | YA -
S ::Ei?dgzr’gﬁ:x;u{fg :ﬂ@zl The Total Bunhme for this query .to run is displayed
tem Tabld_|| [shift_id] = @3 WHERE [workingpunch_id] under the ‘SubTree Cost heading
1Account =@4
L admind
Dissecting the Query

Now we get to compare how the production copy of the database table will perform as
compared to the new table structure with its new indexes. We want to start at the WHERE clause of the

query. The tables listed in any joins are also to be evaluated, but for this example UPDATE statement

Turn on the SQL Server Display Execution Plan @ sunshinesoftware
Option * 9

How a DBA used Confio’s Ignite 8 to Resolve what was Keeping the Customers Waiting

we’ll stick to the WHERE clause.

= = dbo.timeWorkingPunch

@ [Columns

@ (3 Keys

@ [Constraints

@ 3 Triggers

= [Indexes
sh _dta_index_timeWorkingPunch_5_11
sh _dta_index_timeWorkingPunch_8_11
sfy ClockDownload (Non-Unique, Non-
:h department (Non-Unique, Non-Clu
sh IX_AutoJoblD (Non-Unique, Non-Cl
i IXJob (Non-Unique, Non-Clusterec

sh IX_ParentlD (Non-Unique, NOW-Ghue_

sh PK_timeWorkingPunch (Unique, No

4hy timeWorkingPunchl (Clustered)

i timeWorkingPunch31 (Non-Unique
@ @ Statictice

2{F UPDATE timeWorkingPunch
3i| SET inout_id = 1, inpunch dt = '10/12/2010', shift_id = 1977
4 rWHERE workingpunch id = 18679193
S
601 /*
7i| Users ha added Database Tuning Advisor (DTA) indexes without
g proper esting and verification processes.
9
10i| 10 indexes herd is at the upper limit of Online Transactional
11 Processing (OATP) systems on a single table .
ii This query has a WHERE clause.
14jl -, This is where we are going to start.
15
~\
| This is the index situation in Production.

The Primary Key (PK) that we established to build our clustered index on in our testing

database is being used to identify the row to be updated.

2 dbotimeWorkingPunch -

@ (3 Columns

@ (3 Keys

® [Constraints

@ (3 Triggers

= [Indexes
sh DX_AutoloblD (Non-Unique, Non-Clustered)
sh DX_AutoPunch (Non-Unique, Non-Clustered;
ih IX_BreakType_EmployeelD_InPunchDate (No
i IX_CLCKOLD_ACT_EMPID (Non-Unique, Nor
sh IX_ColD_PnchDT_Act_Proc_AutoPnch_Brk (N
s DX_EmplID_Act_Proc_InPnch_BrkType (Non-U
sh IX_EmployeelD_InPunchDate (Non-Unique, !
sh IX_Parentid_AutoPunch_IncludeWPID (Non-!
ih IX_WorkingPunchTS_InOut_EmpID_ActYN_B
shy PK_timeWorkingPunch (Clustered)

@ [Statistics

2 dbo.timeWorkingPunchForecast

2 dbo.userEmployeeView

Turn on the SQL Server Display Execution Plan

ligp g iy oy i e i iy

T VETRIT ©

SET inout

RIOGT G

id = 1, inpunch dt = 1977

'10/12/2010', shift id =

§

Name

Data Type

lvgotliw_jd_ [hunthg int

i SMW jer Add

Remove

Establish the Clustered Index on a LOW SELECTIVITY Field

Move Up

Move Down

@ sunshinesoftware

Option * 10

How a DBA used Confio’s Ignite 8 to Resolve what was Keeping the Customers Waiting

(XX}
The new structure generates a run time
of:
Paylocity_TEST | teewe s = v 33 9[d ‘E]‘*s AT
..~ & X|| 5QLQuery5.sql - Q.cunningham (53))*|_ Object Exp '
w [
imeVen 2 UPDATE timeWorkingPunch
Pk = 3 SET inout_id = 1, inpunch dt = '10/12/2010', shift id = 1977
imeWo WHERE workingpunch id = 18679193
timeWo 5
LuserEmg
Luserinte
.userLog J_d Muaagu\ 77 Execution plan |
.userPref Query 1: Query cost (:e-ut.we the batch): 100%
.userReq UPDATE [timeWorkingPunch] set r pout_id] = @1, [inpunch_dt] = @2, [shift_id] = @3 WHERE (workingpunch_id]=@4
LuserReq = ;
LuserReq :ﬁ E’,‘f;\‘ q] : ljﬁ‘
-userSup upoaTE |} Clustered Index Update | Compute Scalar | Compute Scalar Top Clasvered: Index-Seel (Clustezed)
.userSup Cost: 35 & Cost: 0 & Cost: 0 & Cosz: 0 & (“""“km"’“c';h:.' I:K._t:.mﬂorkmq?..
wverifylo N
L.WSHanc UPDATE
e Cached plan stze 648 Runtime before CR change
mmability Degree of Parallelism 1
Broker Esti d Ope Cost 0 (0%) UPDATE
Estimated Subtree Cost 0.0632893
Estimated Number of Rows 1 \ Cached plan size 488
ST ke The effect of using a proper Clustered Index Degree of Parallelism 1
eDingreid UPDATE [timeWorkingPunch] set (inout_id] :‘"‘":%gg"“cc”' > 13;2;;
" = @1 [inpunch_dt] = @2 [shift_id] = @3 . ree Cost '
em Table WHERE [workingpunch_id]=@4 DELTA = 0.0400037 Estimated Number of Rows 1
LAccount

This small change in runtime (the Delta value above), when executed over a million times resulted in a
significant reduction in SQL server wait time for the end user. This became the template that was used

to further detect and tune the database index structures.

Runtlme Before Runtime After -
CONFIO'

Thursday - October 21, 2010 Friday - October 22, 2010
SQL Name Update TimeWorkingPunch ID SQL Name Update TimeWorkingPunch ID
Wait Time 1:34:40 (hh:mm:ss) Wait Time 05:22 (mm:ss)
Total Wait Time for Day 2:38:08 (hh:mm:ss) Total Wait Time for Day 51:11 (mm:ss)
% of Total Wait Time 60% % of Total Wait Time 10%
Average (seconds) 0.004795 Average (seconds) 0.00024
Executions / 1,184,460 Executions / 1,340,353
Looks to run pretty fast We made it faster! 1.3 million executions
SQL Text SQOL Text
UPDATE [timeWorkingPunch] set [inout_id) = @1,[inpunch_dt) i UPDATE [timeWorkingPunch] set (inout_id) = @1,[inpunch_dt)
= @2,[shift_id] = @3 WHERE [workingpunch_idj=@4 = @2,[shif_id) = @3 WHERE [workingpunch_idj=@4

What happens how?e Repeat!

After documenting the success of this process to upper management, it was time to revisit the
Ignite tool to see what new queries were ‘bubbling up’ towards the top of the wait time matrix. A query

became exposed that had somehow evaded the initial trace capture of the queries hitting this table.

What happens now? Repeat! * 11 @ sunshinesoftware

How a DBA used Confio’s Ignite 8 to Resolve what was Keeping the Customers Waiting

22 WITH
23 {
24 NOLOCK
25)
26 WHERE (userlogin.usertype_id <> 4)
27 AND (userlogin.company id = tblCompany.company id
28) AS WebUsexCount,
29 {
30 SELECT COUNT (usexr 1d) AS NetclockCount
31 FROM userlogin
2 WITH
3
4 NOLOCK
5)

o

WHERE (userlogin.usertype id = 4)
AND (userlogin.company id = tblCompany.company id

BBk W W WWW W W W
]

8) RS N lockC T g .2
SEEIOCKEONEE We have already optimized
S)| FROM tblCompany E
ol wrta this table. However, we
1 haven't seen this query
42 NOLOCK before - time to examine why
43) it is 'bubbling up’ to the top of
44)| LEFT OUTER JOIN 4
2 1 our wait time reports.
46 SELECT MAX (CreatedTime) AS LastActive,
47 company id
48 FROM timeWorkingPunch
49 WITH
50 {
51 NOLOCK
52)
53 GROUP BY company_ id
54) AS blah
55]| ON blah.company_ id = tblCompany.company id
S6)| WHERE (account_id = 1352)
57§~ ORDER BY tblCompany.company id
Day. [Thursday-November 04,2010 v| Time: [200PM10 300PM | Refreshed on: 11/04/10 04:23.46 PM
Timeslice| [SOL Data | Databases | Waits Programs DB Users | Machines | Sessions | Blockers |
SQL: 3909534598 @EIZETND View Historical Charts
Executions 10 Logical Writes 0 Note: SQL Statistics reflect changes in statistical values over the
Physical Reads 8,666 Logical Reads 2.93"195 sampled time, and may be 0 or blank if the monitored database

Instance has not updated its published statistics

[(vepien =1 QEEXD
[SELECT thlCompany.company_id, \ -]
Companynamwe ,
e This query was executed 10 times
Externalifum, during the timeslice of 2pm to 3pm.
Hash, 10 * 127 seconds run time = 1027
Lastictive, seconds / 60 = 17.1 minutes

thlCompany.EAN,

{

SELECT COUNT (employee_id) AS EwployeeCount
FROM empMain

VITH
; R

NOLOCK
)
VHERE (empMain.active_yn = 1)
AND (empMain. _id = tblC . _1id)
)} AS EmployeeCount,

s COUNT(user_id) AS VebUserCount lgnlteg

CONFIO®

Kl

What happens now? Repeat! ¢ 12

@ sunshinesoftware

How a DBA used Confio’s Ignite 8 to Resolve what was Keeping the Customers Waiting

By this time the new index structures have been in production for a week or so and response
time is improving. The lack of customer support calls meant that our changes had performed as
expected. The new query that was now to be evaluated had an astonishing result when it’s runtime
was tested in the old production database. This query took 129.476 seconds to execute. Also, please

make a note of the Missing Index hint (in green) that SSMS is showing. Let’s first take a look at

| (5QLQuenssqlz Q-cunningham (53)); Emp main TWP Mis_cunningham (57)) | Object Explorer Detaits | - X
1[5 SELECT tblCompany.company id,]
d e We've already oplimized TWP table. It
4 External_id, looks like we didn’t catch every single F
5)l ExcernalNum, - query being generated by the system.
3] Hash,
gl || Lastictive,

tblCompany.EAN,

o)l SELECT COUNT (employee_id) AS EmployeeCount
FROM empMain

WiTH
NOLCCK
| WHERE (empMain.active_yn 1

1 AND (empMain. any_id = tblC . y_id
AS EmployeeCount

@ o e A e

g}jml_),m,a Execiuton plan
Query 1: Query cost (relative to the batch): 100%
SELECT tblCompany.compan: companynanme, company cd, Extezrnal_id, Extern

Missing Index (Impact °© RED INDEX [<Name of Mis

Nu=m, Hash, LastActive, tbliCompany.ZAN, (SEL
] ON ([dbe].[timeWorkingPunch)

Neszed Locpe : Yested Loops i Henzed Lecps Nestad Loops

:“?e";’,’ ’,f‘:" (Lafr Outer Joim) (lefr Ourer Joim) (Lefz Outer Join) (Lefz Cuzer Join) c“’:"o . tew1
R Cost: 0 & Cost: 0 & Cost: 0 & Cost: 0 ¢ 2 Cot
SELECT 1
Cached plan size 488 Missing Index Hint is not a green cq,,.,;. Baaddi L3
Degree of Parallelsm 1 light to just add the index! Cesz: 0 %
Memory Grant 1024 |
Estimated Operator Cost 0 (0%) pE
Estimated Subtree Cost 1204763 q i
Estimated Number of Rows 1 Camste Soutar Stresn Aggregate *
v’-p"..) : (Aggzegatel e
woREY Cosz: 0 &
that. =L ne a

SSMS Offers Us Some Help

We know that we’ve already optimized this table during our initial investigation and CR
changes. Is it possible that this index hint can be integrated into the new Index structure without

adding a new index? Here’s the full index

hint.

1g /*

2 Missing Index Details from Emp main TWP Missing Index - high run time.sqgl - QSSCONSULTANT. @

Paylocity (QQREST\dcunningham (57))

3i| The Query Processor estimates that implementing the following index could improve the query
|| cost by 99.7995%.

i | s _Lets look at the proposed index structure.

2 I/' -How does this proposal fit into our current

71| USE [Paylocity] index structure on the production table?

8| co

8| CREATE NONCLUSTERED INDEX [<Name of Missing Index, sysname,>]

l’.f ON [dbo].[timeWorkingPunch] ([company id])

11/| INCLUDE ([CreatedTime])

12i| 60

13ib =/

SSMS Offers Us Some Help * 13 @ sunshinesoftware

How a DBA used Confio’s Ignite 8 to Resolve what was Keeping the Customers Waiting

Here is our current index that is built on the filtered field
company_id.

DROP INDEX [dbo].[timeWorkingPunch].[IX_CoID_PnchDI_Act_Proc_AutoPnch_Brk]
/**=*=* Object: Index [IX_CoID_PnchDI_Act_Proc_AutcPnch_ Brk] Script Date: 11/05/2010 08:53:43 weweern/

5 CREATE NONCLUSTERED INDEX [Ix_CoID_PnchDT_ac:_P:oc_AuccPnch_B:k] ON [dbo]. [timeWorkingPunch]

[company_id] ASC,
[inpunch_dt] ASC,
[active_yn] ASC,

\ We already have an index in our system that is built upon the company_id field as

{processed yn] ASC, the first field of the index. This index looks like it should be our 1st candidate for

[AutoPunch] ASC, revision.

{breaktype_id] ASC In the include section of this index we don't see the field (CreatedTime) that
the query is asking for in the SELECT statement.

INCLUDE [workingpunch_id]

[exployee id)) WITH (PAD_INDEX OFF, STATISTICS_NORECOMPUTE =~ OFF, SORT_IN_TEMFDB OFF, IGNCRE_DUP_KEY OFF, +
“DROP_EXISTING = OFF, ONLINE =~ OFF, ALLOW_ROW_LOCKS ON, ALLCW_PAGE_LOCKS ON) ON [PRIMARY]

GO

~-= [CreatedTime)

- CREATE NONCLUSTERED INDEX [IX_CoID PnchDT_Act_Proc AutoPnch_Brk] ON [dbo].[timeWorkingPunch]

[company_ id] ASC,
[inpunch_dt] ASC,
{active_yn] ASC, So we create a script of the original index. drop the original index and

[processed_yn] ASC, - . . -
{AutoPunch] ASC, then add the new field in the INCLUDE section. Then we re-create this

{breaktype_id] ASC index!

INCLUDE ([woxkingpunch_id]
+ [employee_id]

s, [CreatedTime])
WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, SORI_IN TEMPDB = OFF, IGNORE_DUP_XEY = OFF, DROP_EXISTING =]
“OFF, ONLINE = OFF, ALLOW ROW _LOCKS = ON, ALLOW_PAGE LOCKXS = ON) ON [PRIMARY]

GO

Since we already have an index on the company_id field we move our attention to the SELECT

statement. Here we see the requested field as: SELECT MAX(CreatedTime) as LastActive. The field
CreatedTime is not listed in our INCLUDE part of the index. So we add this field into the index
creation script. After dropping the original index and rebuilding the index with the new field it’s time

to test our performance.

SSMS Offers Us Some Help * 14 @ sunshinesoftware

How a DBA used Confio’s Ignite 8 to Resolve what was Keeping the Customers Waiting

The End Game

The test run gives me back an astounding result as a run time for this new index
structure:

* Emp main TWP Mis...cunningham (57)) | Object Explorer Details |

25)
26 WHERE (userLogin.usertype id <> 4) ind =
27 AND (userLogin.company id =~ tblCompany.company id) We've lost the i x hint
| 28) AS WebUserCount,
=) ('8 .
1;3 Rndulu) Munqxl]& EWCannhn’
Query 1: Query cost (relative to the batch): 100% f

SELECT tblCompany.company_id, companyname, company cd, Exterxnal id, ExtexnalNum, Hash, LastiActive, tblCompany.ZAN,

= 3 fe] tc] ic] c]

» . ¢ N ed Lo : Nested Loops ! Nested L — Nested Loo| .
Ccz::::' son:“ (!.o!.v.no.xu: O;;m) (Ia!r.'.c:au: o;;;n) (Left :":o?\:m’\ (Lot': 'O.u'nz :l::'m)
- . Cosz: O & Cost: 0 % Cosz: 0 & Cost: 0 &
SELECT ‘
. Main Ideas: |
Cached 488
S 5 Don't just take the DTA proposals and
Memory Grant 1024 implement them. Take some time to
Estimated Operator Cost 0 (0%) examine the table and index structure]
Estimated Subtree Cost 0.56109 to see how you can add speed without s i s
Estimated Number of Rows A 1 adding maintenance overhead. s
After all new Indexes have been applied £
s | I
We've lost 126 seconds of runtime! This is — ‘ R, e cu
. e . o Compuze Scalar it
the WOW moment. Also our execution Cout= 0 % (Aggzegate) luze
plan has changed substantially. M
Conclusion

After spending many hours of testing and tuning the index structures the final evaluation of

this queries runtime offers a positive

result.
Runtime Before Runtime After
SELECT SELECT
Cached plan size 488 Cached plan size 488
Degree of Parallelism 1 Degree of Parallelism 1
Memory Grant 1024 § Memory Grant 1024
Estimated Operator Cost 0 (0%) § Estimated Operator Cost 0 (0%)
Estimated Subtree Cost 129.476)| Estimated Subtree Cost 0.56109

Estimated Number of Rows o 1 | Estimated Numberof Rows & 1

/s

Production Value £ Ater all new Indexes have been applied

The End Game * 15 @ sunshinesoftware

How a DBA used Confio’s Ignite 8 to Resolve what was Keeping the Customers Waiting

We then wanted to see this complete set of queries (in the Excel CSV file) run under a simulated
load, to see how the proposed indexes would perform. Below is shown two reports from this tool. The
first image reflects many important performance metrics against a copy of our production database.
The second image is a report when the tool was pointed with the same workload files against the
modified ‘Testing” database.. All of the unique queries (over 260 of them) were executed in a load

simulating 100 users. The final results were rewarding and left a warm fuzzy feeling inside.

This image displays a final verification that the proposed index optimizations will be an

improvement in database performance and in query response time

Runtime Comparison

. Statistics for the Userload:

Production
User TPS KBPS Avg. Response Avg. Transaction Total Total Total
Load Time (sec) Time (sec) Executions Rows Errors
100 1.04 553.840 96.015 96.015 2000 5531433 2

: q

TeStl ng (NeW In exes) User TPS KBPS Avg. Response Avg. Transaction Total Total Total
Load Time (sec) Time (sec) Executions Rows Errors
100 2.81 |1496.125|35.539 35.539 2000 5513346 0

About the Author

Dale Cunningham is a Sr. Database Administrator and has worked for enterprises both large
and small. As a sole DBA for Intuit’s CustomerCentral databases which supported the products of
Quicken Online (now consolidated with the Mint application that was acquired by Intuit), QuickBooks
Online, Quicken Desktop and Finance Works he was provided an environment of very large OLTP
transactions per second and a 1.6 TB database to manage in a clustered environment. Many other

companies have provided experience in getting the most performance as possible from SQL Server
2000, 2005 and 2008.

Dale has been involved with computers since 1984. The IBM XT model was the hook and the IT
bug bite never healed. Beginning a degree in computer science at FIU with an AA degree from
Broward Community College in hand, Data structures, C++ and Java became mandatory languages to
learn. Then it all changed when a database class ignited the fire of what this wonderful invention from
Sybase and eventually Microsoft could do. SQL server became integrated into every website he built in
classic ASP 3, VBScript and JavaScript.

Along the way many people have participated in the development of Dale as a DBA, mainly the
family members that endured the numerous hours he spent reading, testing and developing SQL
scripts and ASP code. Dale achieved the MCDBA certification from Microsoft for SQL Server 2000 and

About the Author * 16 @ SunShlneSOft‘.'v'arE‘

How a DBA used Confio’s Ignite 8 to Resolve what was Keeping the Customers Waiting

is looking forward to becoming certified in SQL Server 2008. Thanks to Jack Martin, Steven Benjamin,
Rafael van Dyke, TJay Belt and Rick Morelan of the Joes to Pros series, for jobs, friendship and

additional training.

Thanks to Confio Software and Microsoft for supplying the software tools to make this project
report possible — and easier!

Download a free trial of Confio Ignite from www.confio.com .

"l ﬁ sunshinesoftware

http://www.confio.com/

