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• How	does	the	brain	organize	and	represent	all	its	vast	knowledge	about	concepts	and	
categories?	

• We	investigated	the	neural	structure	of	conceptual	space	by	using	three	publically	
available	datasets	that	all	sample	from	a	high	number	of	visually	presented	concepts.

• To	examine	the	shape	and	structure	of	the	representational	space,	we	used	
multidimensional	scaling	(MDS),	a	dimensionality	reduction	technique	commonly	applied	
to	both	visualize	and	inspect	the	underlying	structure	of	a	dataset.	

• Across	measurement	scales	(fMRI	and	single-cell	recordings)	and	species	(human	vs.	non-
human	primates),	the	derived	representational	manifolds	were	spherical	in	shape	(e.g.	
Fig.1&2).	

• However,	MDS	of	random	data	(containing	near	equal	dissimilarities)	will	also	lead	to	
spherical	solutions	in	a	3D	space	(Borg	&	Groenen,	2003).	

Introduction

• To	examine	the	relationship	between	the	amount	of	structure	in	the	data	and	the	shape	of	
the	scaled	manifold,	we	systematically	varied	the	structure	in	a	series	of	simulations	away	
from	randomness	by	manipulating	the	data’s	power	spectrum.

• Using	an	inverse	Fourier	transform,	we	generated	spatial	data	on	a	grid	of	500x500	and	
incrementally	increased	the	exponent	in	steps	of	0.2	from	white	noise	(f0)	to	pink	noise	
(f1),	to	Brownian	noise	(f2),	and	to	3.6.	

• We	show	that	spherical	manifolds	break	down	between	pink	(1/f1)	and	Brownian	noise	
(1/f2)	(see	Fig.2).

Experimental	Data	Description

Proposition1:	Datasets	with	large	number	of	items	scale	into	spheres.
• No,	distances	of	1000	European	cities	do	not	scale	into	a	sphere,	but	reproduce	a	map	of	

Europe.
Proposition2:	Data	of	only	specific	distributions	scale	into	spheres.
• No,	all	data	sampled	from	a	random	Gaussian,	lognormal,	negative	binomial,	exponential,	

Poisson,	gamma,	or	uniform	variable	create	spherical	manifolds	when	scaled	in	3D.
Proposition3:	Data	that	is	random	should	violate	the	third	metric	axiom	– the	triangle	
inequality. Only data	that	violates	the	triangle	inequality	scales	into	a	sphere.	
• No,	all	distributions	sampled	from	a	random	variable	produce	spheres,	whether	they	

violate	the	triangle	inequality	or	not.	All	three	experimental	datasets	satisfy	the	triangle	
inequality.	

Proposition4:	The	distance	metric	used	influences	the	shape	of	the	resultant	MDS	solution.
• Yes.	Correlation	distance	produces	a	hollow	sphere,	while	Euclidean,	Manhattan,	

Canberra,	Minkowski,	and	cosine	distances	produce	a	filled	sphere.	
Proposition5:	The	data	does	not	contain	any	structure.
• No,	all	three	neural	datasets	contain	meaningful	categorical	clustering	(e.g.:	see	Fig.1)

What	Is	Causing	Spherical	Manifolds	in	MDS?

• Both	random	and	non-random	data	can	produce	spherical	manifolds.	Four	features	
distinguish	artifact	from	meaningful	shape:	the	type	of	spherical	shape,	the	triangle	
inequality,	the	data’s	categorical	structure,	and	its	frequency	spectrum.	

• The	particular	type	of	spherical	shape is	an	artifact	caused	by	the	distance	metric	applied.	
Correlation	distance	leads	to	an	empty	shell-like	spherical	structure	(i.e.	Fig.2,	bottom	
panel),	while	all	other	tested	distance	metrics	lead	to	a	filled	sphere	(Fig.2,	top	panel).

• All	experimental	data	satisfy	the	triangle	inequality,	which	might	be	a	necessary	but	not	
sufficient	criterion.

• The	Kiani	and	Kriegeskorte datasets	exhibit	meaningful	category	clustering (e.g.	Fig.1),	but	
the	BOLD5000	dataset	does	not.		

• Power	spectra	of	both	white	and	pink	noise	can	produce	spherical	manifolds. A	phase	
shift	occurs	at	the	boundary	between	pink	(α=1)	and	Brownian	noise	(α=2	).	The	
frequency	spectrum	of	the	Kiani	and	Kriegeskorte data	lie	close	to	pink	noise	(mean	
α=0.69;	Fig.4),	which	has	been	argued	to	be	a	characteristic	signature	of	complexity	
(Gilden,	Thornton,	&	Mallon,	1995)	and	a	common	occurrence	in	human	cognition	
(Wagenmakers,	Farrel,	&	Ratcliff,	2004;	Kello et	al.,	2008). However,	the	BOLD5000	data	
consists	of	a	frequency	spectrum	closer	to	white	noise	(mean	α =	0.16).

• The	triangle	inequality	and	power	spectra	might	be	related	to	the	homogeneity	of	the	
category	structure.	This	needs	to	be	tested	further.	

Discussion

Our	results	show	that	the	spherical	manifolds	observed	in	the	experimental	datasets	is	an	
intrinsic	property	of	the	conceptual	space	and	not	an	artifact	of	the	MDS	model.	Thus,	we	
cannot	rule	out	that	neural	concept	space	is	spherical.	

Conclusions

Dataset	1:	Kiani	Data	(Kiani	et	al.,	2007):	1084	visual	object	representations	of	single	cell	
recording	from	monkey	inferior	temporal	cortex.	
Dataset	2:	Kriegeskorte Data	(Kriegeskorte et	al.,	2008): 92	visual	object	representations	of	
human	and	monkey	inferior	temporal	cortex,	based	on	a	subsample	of	96	objects	from	the	
Kiani	dataset.	The	human	data	was	acquired	via	fMRI	scanning.
Dataset	3:	BOLD5000	(Chang	et	al.,	2019):	Human	MRI	activation	responses	to	5000	visual	
images	from	five	different	ROIs	(early	visual	cortex	(EV),	lateral	occipital	cortex	(LOC),	
parahippocampal place	area	(PPA),	retrosplineal complex	(RSC),	occipital	place	area	(OPA)).

1/f	α Spherical	Simulation

Figure	1. 3D color-coded plot of the Kiani data showing clustering of the different subcategories. 

The	Triangle	Inequality:	d(A,B)	≤ d(A,C)	+ d(B,C)
The	distance	between	concepts	A	and	C	cannot	be	further	than	the	sum	of	their	
distances	to	any	other	object	B.

Figure	3.	3D	MDS	solutions	showing	the	decomposition	of	the	spherical	structure	from	pink	to	Brownian	noise.

Figure	4. Spectral	density	analysis	of	the	Kiani	and	Kriegeskorte data	revealing	frequency	spectra	closer	to	pink	noise.	
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Are	the	spherical	manifolds	observed	in	the	experimental	neural	data	an	
artifact	due	to	noise	(or	randomness)	or	are	they	an	intrinsic	property	of	

conceptual	space?	

Research	Question

Figure	2. 3D	MDS	configurations	for	CSI3	of	the	BOLD5000	data	from	the	left	hemisphere	of	the	five	different	ROIs.	
The	top	panel	shows	3D	MDS	solutions	using	Euclidean	distance,	while	the	bottom	panel	used	correlation	distance.


