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Introduction

* [ace identity and facial expressions are important cues to navigate the
soclal world. According to a traditional account, identity and expressions
are processed by separate pathways. Recent evidence has challenged this
view: face identity can be decoded from response patterns in regions
previously implicated in expression recognition (pSTS"?); facial expressions
can be decoded from ventral temporal regions?,

*  We hypothesize that joint processing of expressions and identity is driven
by computational efficiency. Recognition of identity and expressions might
be “complementary” and benefit from each other. For example, If a face
image has curved eyebrows, and it 1s overall consistent with an angry
expression, we can conclude that the curved eyebrows are not a lasting
property that is diagnostic of that face's identity, Improving our accuracy to
recognize that same identity with a neutral expression In future images.

* QOur lab has recently found evidence supporting this: artificial neural
networks (ANNSs) trained to recognize expressions spontaneously learn
features that support identity recognition® .

* |Instead of extracting one property (l.e.identity) and discarding information
about other properties (1.e. expression), face processing might disentangle
identity and expressions.
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Identity-related feature
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Ve investigate transfer learning in the reverse direction: Can ANNSs trained to
distinguish between identities learn features that support recognition of facial
expressions?

Methods

Karolinska Directed Emotional
Faces (KDEF)

Face stimuli:
Labeled Faces in the Wild

(LFW)

VGGFace?

Network archrtectures:
|. Siamese network
* Trained without handcrafted features using the LFW> database to
discriminate between identities.
* All layers except the fully connected (FC) linear layer used RelLU as the
activation function. The net was trained to minimize the cross-entropy loss.
2. ResNet-50°
* Pre-trained with VGGFace?’ database to perform identity recognition.
* [he net was trained to minimize the cross-entropy loss.
All of the networks were tested using the KDEF® dataset.
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Siamese network architecture trained to perform a face verification task. The network
learns to determine If two identities are the same or different.

77.22%

 [he network Is able to discriminate between
identrties when tested on LFVWV, but performs poorly
on the KDEF dataset.

60.01%

B LFW KDEF

Transfer learning from net to
expression recognition

* A FC layer was attached to the pre-trained network and re-trained to

generate the correct output. —» Happy
* The pre-trained network’s weights are fixed after the inrtial —>Sad
. . L » Angry
training, so that nonlinear features cannot be learned from the » Surprised
loss based on expression. ) Disgusted
* The network performed with an accuracy of |5% (at chance) > Afraid
—» Neutral

when tested on expression labeling, failing to transfer.
* Since the net did poorly on identity as well, it can be difficult to interpret the
results. T herefore, we wanted to use a more accurate network.

Face identification network:
ResNet-50

* We tested the net's ability to generalize to the KDEF dataset.
* The pre-trained network was able to perform face identification on the KDEF

dataset with an accuracy of 98.6%.
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ResNet-50 architecture pre-trained with VGGFRace? to perform a face identification task.

The last layer was removed and a FC linear layer was attached to generate labels for
KDEF.
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Transfer learning using ResNet-50
architecture to expression recognition

* Again, an FC layer was attached to
the network and the net was re-
trained, keeping the weights for the

other layers fixed. The nonlinear - \rA -
components of the net fully rely on SRR = 1<l || 2
the identity-based training. . TEPEEMELE = e e [ s
* [he netis able to label expression noutma AR %
above chance (14.2%) with an
accuracy of 62.6%.
Discussion

* [hese results show that deep networks trained to recognize identity
spontaneously develop representations that support expression recognrtion.
This work has demonstrated transfer learning in the opposite direction*. These
findings provide a proof of concept of the complementarity between identity
and expression.

* We propose that this “complementarity” underlies the empirical observation of
identity information in brain regions previously implicated in expression
recognition, and vice versa.

Ongoing and future directions

* Deep networks trained to recognize identity might yield good transfer to
expressions either because |) identity and expressions rely on common
features, or because 2) they need to disentangle identity from expression,
leading to disentangled expression representations as a byproduct. Analyses
in the opposite direction (training on expression and testing on identity)
provided support for the second hypothesis.VWe are currently testing this
for the network trained on identity.

* (an these deep network models accurately predict neural responses to face
images! Ve are In the process of investigating this question.
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