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Background: Big data initiatives have enabled dynamical models of neural activity! while
also empowering the study of individual difterences?.

Mesoscopic Individualized NeuroDynamic (MINDy)

However, there remains a gap
between dynamical models which have enabled mechanistic hypothesis-testing of circuit
function and statistical models that dominate data driven studies of individual differences.

We aim to bridge this gap with MINDy modeling.

modeling: The entire brain is modeled as a network of neural-mass models3 (1/region: "n" total)

with 3 components each:

1. A weight matrix of connectivity: W: (nxn)

2. A transfer function transforms local neural activity into output signals: W (X): (nx1)—(nx1)

D 6

3. A decay coe

x(t): activation vector (all regions): dx/dt = Wip(x) —

M]NDy Mode]mg Produces Signed, D1rected Connecuwty

mmmmmm

ppppppp

H AR EFTE B
VisPeri ' -‘Y‘; g i : Siid0id. ; 0.016
GG . . 1
B o

i uge] : 0.012
- : i S e B I - =1 0.008

«

@ -
*
B [} .

S FREIT AT T

CCCCCC

CCCCCC

LimbicB

Fitting Individualized Models in ngh D1mens1ons

1. Decompose the weight matrix into sparse (W,) and low-rank/di

ﬂ

2. Stochastic gradient descent with adaptive momentum (NADAM)
3. Allow region specific curvature (A) in the transfer function: W(x) =

Poor Local Minima

Robust Minimum

Robust Minimum

icient describes how quickly each neural mass returns to baseline activity: D: (nx1)

use components (W, W,1)
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M]NDy is Robust to Motion Artifact: MINDy does not suffer under differences in motion

(within a reasonable range) or differential motion between scans. This property holds for Frame-wise

Displacement (FD), DVARS, and the proportion of censored frames (from FD, DVARS cutoft).
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MINDy Parameters are Robust to Preprocessing Choices:

Considered 3 levels:

1. Motion on1y4: (scrubbing and
censoring with DVARS and Frame

Displacement)
2. +COII1PC01'1'5 : White matter and CSF

principle components regressed out.

3. +Global Slgnal Mean signals for white

matter, CSF and grey matter regressed out
in addition to CompCorr

MINDy Retrieves Ground-Truth Connectivity and
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Decay Under Realistic

HRF Uncertainty and Noise:

* Simulated MINDy with

parameters randomly
selected from individuals

* Retrieved parameters while
varylng measurement noise

and variability in HRF
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Performance vs. Noise
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MINDy Models & Parameters Differentiate Individuals

* “HFingerprinting” analysis Single subject vs. All others = 0 p L) & (ol +44 — a(t)) (3 Predicted FC < Actual FC
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[solating Task Effects with MINDy BOLD Signal: Y(t+1)
. . . . = » AFNI
* Activity during task consists of direct task- .
modulation and the flow of this activity [h*1(X)](t)|Conv.
through brain networks. BOLD f
. By ﬁltering_out the resting_state model é:—rz-l-i];i ......................... ' ..........................................................................
predictions, we better isolate task-modulation. X(1) —¥»(X(1))
HRF Deconv MINDy
Isolating Cognitive Conflict Signatures Prediction

* High vs. low conflict conditions in three tasks:

1. AX-CPT, 2. Sternberg, 3. Stroop

* Same AFNI GLM applied to either the original BOLD time-series or after
subtracting MINDy (resting-state) predictions.

* Compared group-level t-Tests across parcels
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Original BOLD Signal
Removing Intrinsic Dynamics Improves Temporal Precision

* Compared GLM estimates for the eftect of cognitive conflict during and after the probe period.
* After filtering intrinsic dynamics (via MINDy), task eftects are centered about the period of
cognitive conflict (probe).
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Applications: We have validated a powerful new tool for directly fitting high-dimensional

dynamic networks to individual subject’s data and envision the following applications:
1. An improved measure of effective connectivity

2. Nonlinear analysis of human brain dynamics
3. A more general method to isolate task-related brain signals: unlike Dynamic Causal

Modeling®, we generate large models using only resting state, so we need not constrain task
dynamics. Subtracting model predictions leaves a full time-series of task-induced changes.
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