Depth-Dependent BOLD as a Measure of Directed Connectivity During Language Processing Daniel Sharoh¹, Tim van Mourik¹, Lauren J. Bains¹, Katrien Segaert², Kirsten Weber³, Peter Hagoort^{1,3}, David G. Norris^{1,4} ¹ Donders Institute for Brain Cognition and Behaviour, Centre for Neuroimaging; ² University of Birmingham, School of Psychology; ³ Max Planck Institute for Psycholinguistics, Nijmegen; ⁴ Erwin L. Hahn Institute

Introduction

- The input/output topology of neocortical circuits is known to be organized with respect to cortical laminae,⁴ and blood supply has been shown to be regulated at this level^{1,8}
- A growing body of evidence suggests high-field MRI is capable of resolving laminar specific BOLD responses^{5,6,8,9}
- This work demonstrates whole brain, laminar connectivity during a reading task.
- Noninvasively disentangles directed information streams through the brain during reading, on the basis of cortical depth dependent BOLD in the ventral occipital sulcus (vOT)

Acquisition and Analysis Procedure

Layering shown over different acquisitions for a single subject.

- Data acquired on Siemens 7T scanner at Erwin L. Hahn Institute
- Segmentation and depth parcellation performed on IR-EPI
- Depth parcellation follows level-set method of Waehnert et al.^{10,11}
- Single subject laminar signal extracted using spatial GLM on fROIs¹⁰
- Individual fROIs selected by weighted contrast of T-scores for words and pseudowords against false fonts

Radboud University

Radboudumc

Depth-dependent connectivity during task

Whole brain gPPI connectivity seeding from the deep bin of vOT. No significant finding for the middle bin.

References

- ¹ Adams DL., et al. Cereb Cortex; 25 (10): 3673-3681, 2015
- ² Bastos A., et al. Neuron; 76(4): 695-711, 2012 ³ Chen Y., et al. J Cogn Neurosci; 27(9): 1738-51, 2015
- ⁴ Douglas & Martin. Annual Review of Neuroscience; 27: 419-451, 2004
- ⁵ Kok P., et al. Current Biology; 26, 371-376, 2016
- ⁶ Koopmans PJ., et al. Human Brain Mapping; 31:1297–1304, 2010

⁷ Polimeni JR., et al., Neuroimage; 52(4): 1334-1346, 2010 ⁸ Poplawsky AJ., et al., J. Neuroscience; 35 (46): 15263-15275, 2015 ⁹ Trampel R., et al., Proc. of the 20th Meeting of ISMRM 20, 663, 2012 ¹⁰ van Mourik, in preparation ¹¹ Waehnert et al., Neuroimage; Jun 2: 210-20, 2013