

AIMS

- □ To implement independent component analysis (ICA) to decompose the resting state fMRI data into resting state networks (RSNs),
- □ To understand effects of posterior-anterior shift in aging (PASA) on creative brain
- □ To investigate the role of cerebellum in creativity for younger and older adults.

INTRODUCTION

- \Box Creativity: mental ability to produce unusual but useful thoughts which help to solve problem¹.
- \Box Posterior-anterior shift in aging: the effect of aging during a task based fMRI study².
- □ The association between creative cognition and cerebellum is unknown.
- □ Previous resting-state fMRI (rs-fMRI) findings suggested involvement of the default mode network (DMN) and salient network during a particular creative task like AUT and at rest^{3,4}.

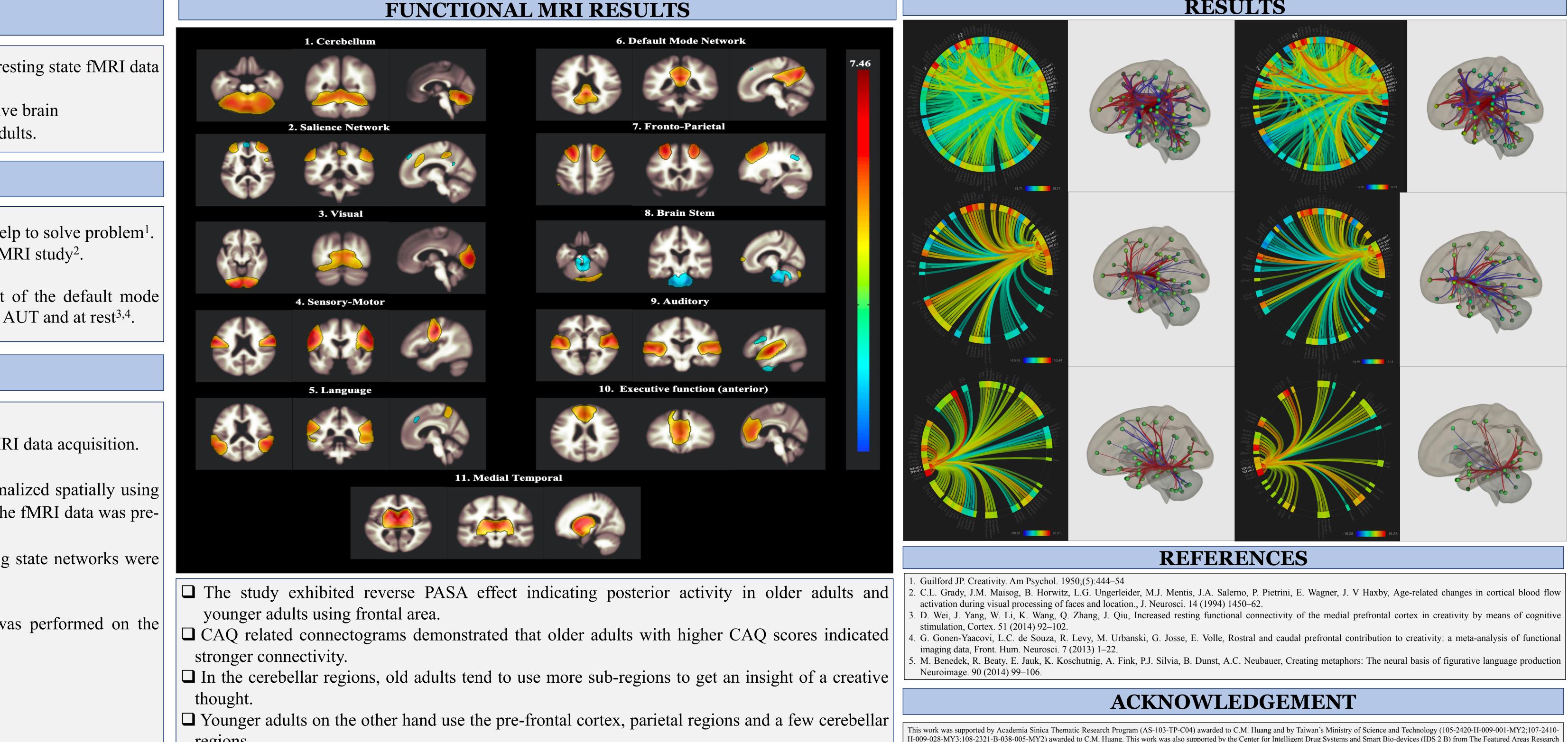
MATERIALS AND METHODS

MRI Parameters and Images Processing

- □ A 3T Siemens MRI Scanner (magnetron Trio, Siemens, Germany) for fMRI data acquisition.
- **TR/TE:** 2000ms /30 ms
- □ The functional data was slice time corrected, motion corrected and normalized spatially using MNI template and smoothed using 8 mm³ Gaussian kernel FWHM. All the fMRI data was preprocessed and analyzed in CONN using MATLAB 2018b.
- Group-ICA was used to decompose the rs-fMRI data and various resting state networks were identified. The number of components chosen was 30.
- □ The rs-fMRI data was band pass filtered between 0.008Hz to 0.09Hz.
- □ Functional connectivity measures were calculated and ROI analysis was performed on the obtained RSNs.

Participants

- □ 34 Older adults (24 females) & 21 Younger adults (10 females).
- Creativity assessment questionnaire was provided to the participants.


Effects of posterior-anterior shift in the aging brain on creativity: A combined ICA and resting-state fMRI study

Abhishek Uday Patil^{1,2}, Deepa Madathil², Ovid J.L. Tzeng^{1,3,4,5,6,7}, Hsu-Wen Huang⁸, Chih-Mao Huang^{1,3,4}

1.Department of Biological Science and Technology, National Chiao Tung University, Taiwan

2.Department of Sensor and Biomedical Technology, School of Electronics Engineering, Vellore Institute of Technology, India

3. Center for Intelligent Drug Systems and Smart Bio-devices (IDS²B), National Chiao Tung University, Taiwan; 4. Cognitive Neuroscience Laboratory, Institute of Linguistics, Academia Sinica, Taiwan 5. Department of Educational Psychology and Counseling, National Taiwan Normal University, Taiwan; 6. College of Humanities and Social Sciences, Taipei Medical University, Taiwan 7.Hong Kong Institute for Advanced Study, City University of Hong Kong, Hong Kong; 8. Department of Linguistics and Translation, City University of Hong Kong, Hong Kong

regions.

Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE) in Taiwan.