Consumer-Based EEG Devices—Are They Mind-Wandering? Shenyang Huang,^{1, A} Claire Simmons,¹ William L. D. Krenzer, PhD,¹ & Nita A. Farahany, PhD, JD^{1,2}

¹ Duke University, ² Duke University School of Law ⊠ shenyang.huang@duke.edu

Introduction

Mind-wandering (MW) occurs when one's attention drifts away from the immediate task at hand. Recently, consumer-based EEG headsets have been used by professional athletes to monitor concentration during training and by schools to detect students' attention level in class. But how these one-size-fits-all devices with sparse semi-dry electrodes compare to conventional scalp EEG caps in terms of efficacy remains unclear. This study investigates whether the EMOTIV Insight device distinguishes the brain states during attention and MW.

Materials and Methods

EMOTIV Insight 5 Channel Mobile EEG^[3]

- Sensor: Hydrophilic semi-dry polymer
- Electrode: T7, AF3, Pz, AF4, T8
- Frequency response: 0.5-43Hz
- We collected data on four brainwaves: Delta (1-4 Hz), Theta (5-7 Hz), Alpha (8-12 Hz), and Beta (13-30 Hz).
- Recent EEG studies found that MW is associated with a general *higher* Alpha wave power^[3] and *higher* Theta/Beta Ratio (TBR) in frontal regions.^[4]

Participants

• N = 17; M = 26.53 years, SD = 13.62; 6 female; 47% East Asian; all right-handed

<u>Task</u>†

- 3 blocks of the AX-Continuous Performance Test (press the spacebar for any letter 'X' immediately preceded by an 'A')^[1]
- 21 pseudo-randomly placed MW probes

Results

For within-subject comparison included participants who repo 'Yes' and 'No' MW Responses Table 1).

<u>Repeated measures ANOVA with MWR and Electrode as factors</u>

- statistically significant, F(4, 64) = 1.667, p = .215.

	1	AF3	Т7	Pz	
		T-test, p = 0.24	T-test, p = 0.43	T-test, p = 0.61	
	1000 -				
ower	750-				
Alpha p	500-		× •		
	250-		>		
	0 -				E

丼 No 丼 Yes

Discussion

- between mind wandering and attention on task.
- provide meaning bases for decoding people's brain states.

Future Directions

Disclosure

This research is not funded by any consumer-based EEG company including EMOTIV. Acknowledgements

This research was supported by Duke Bass Connections. We also thank all team members of the "Consumer EEG Devices: Attention, Emotion, Privacy and the Brain (2019-2020)" team for their input. Notes + As part of a broader project, after the AX-CPT, we showed participants pictures from International Affective Picture System (IAPS) and asked their feelings.

References

[1] Barch D et al. Dissociating working memory from task difficulty in human prefrontal cortex. Neuropsychologia. 1997 Oct 1;35(10):1373–80. [2] Device information and images; Retrieved February 14, 2020 from https://www.emotiv.com/product/emotiv-insight-5-channel-mobile-eeg/ [3] Compton R et al. The wandering mind oscillates: EEG alpha power is enhanced during moments of mind-wandering. Cogn Affect Behav Neurosci. 2019 Oct 1;19(5):1184–91. [4] van Son D et al. Frontal EEG theta/beta ratio during mind wandering episodes. Biol Psychol. 2019 Jan 1;140:19–27.

[5] Squires NK, Squires KC, Hillyard SA. Two varieties of long-latency positive waves evoked by unpredictable auditory stimuli in man. Electroencephalogr Clin Neurophysiol. 1975 Apr;38(4):387–401.

	MWR	Mean (SEM)	Median	
n, we only	Yes	9.3 (1.3)	10.5	
orted both (MWR; see	No	11.7 (1.3)	10.5	

Table 1. Descriptive statistics of participants' (N = 18) response to Mind-Wandering prompts (total = 21).

• Alpha power: difference between 'Yes' (M = 70.38, SD = 17.35) and 'No' (M = 49.88, SD = 9.76) trials was trending toward significant, F(1, 16) = 4.072, p = .061. The interaction between MW Response and Electrode (AF3, T7, Pz, T8, AF4) was not

• TBR: no statistically significant difference between 'Yes' and 'No' trials, F(1, 16) = 0.145, p = .709. The interaction between MWR and Electrode (AF3, T7, Pz, T8, AF4) was not statistically significant, F(4, 64) = 0.516, p = .591.

Based on relevant EEG studies in the literature, we chose to examine the Alpha power and frontal Theta/Beta Ratio

• We expected higher Alpha power and higher TBR during mind wandering, but the result was not significant.

• Our finding raises the questions of whether the consumer-based EMOTIV Insight EEG headset can collect the same brain activity patterns as those collected from conventional scalp EEG caps, and of whether consumer-based EMOTIV EEG data

• We are trying to replicate a more well-studied effect, the P300 wave,^[5] to help us test the efficacy of EMOTIV Insight. In the future, we might conduct a direct comparison between consumer-based EEG and conventional scalp EEG. • We also plan to run similar validation studies using different brands' consumer-based EEG devices.

BASS CONNECTIONS

T7 T-test, p = 0.56	Pz T-test, p = 0.68	T 8 T-test, p = 0.78	AF4 T-test, p ≠1
	ו		■X
>		•×	× × ×
× •× × •	•× • ×		
	📩 No 📩 Yes		

Scan here to find more about us!