Differential Neural Responses During Moral and Economic Value-Based Decision-Making

Yu-Hsuan Kao ${ }^{1}$, Chi-Chuan Chen ${ }^{1}$, Yu-Shiang Su ${ }^{1,2}$, Chien-Te Wu ${ }^{1,3,4,5}$, Joshua Oon Soo Goh ${ }^{1,5,6,7}$

${ }^{3}$ School of Occupational Therapy, College of Medicine, National Taiwan Universitit. ${ }^{4}$ Department of Psychiatry, National Taiwan University Hospital, National Taiwan University.
${ }^{5}$ Neurobiology and Cognitive Science Center, National Taiwan University. ${ }^{\circ}$ Department of Psychology, National Taiwan University. ${ }^{\text {. }}$ Center for Artificial Intelligence and Advanced Robotics, National Taiwan University.

Introduction

- Evidence shows that valuation of moral situations involve similar neural processes as economic situations across different probabilities and magnitudes. ${ }^{1}$
However, a person's utilitarian or non-utilitarian decision preferences should involve differential neural circuits when arbitrating between monetary and human life forfeiture.
- We investigated these neurobehavioral processes underlying valuebased decisions regarding variable amounts of money or human life tradeoffs. We hypothesized that decisions involving monetary and human life forfeiture would reflect utilitarian and non-utilitarian strategies involving different brain regional engagement.

Methods

- Parameters of functional MRI 8 echo planner imaging runs, 169 volumes per run. TR $=2 \mathrm{~s}, \mathrm{TE}=24 \mathrm{~ms}, 38$ axial slices, $3.4 \times 3.4 \times 4 \mathrm{~mm}$ resolution, 64×64 matrix.
Participants: 36 healthy young adults, mean age $(S D)=23.5$ (3.1) years, 21 females, 15 males.
- Moral Choice Task: Participants first read a story indicating a hypothetical scenario, and then saw an initial life/cash expected value (EV) and an alternative EV described by varying probabilities and amounts under the scenario. Participants either accepted the initial EV (Stay) or forfeited life/cash in exchange for the alternative EV (Switch).

Initial $\mathrm{EV}=0.9 \times 8+0.1 \times 10$ Iltial $\mathrm{EV}=0.9 \times 8+0.1 \times 10$
Aler $\mathrm{EV}=0.9 \times 3+0.1 \times 15$ EVD $=$ initial $E V-$ alter EV

Reference

${ }^{1}$ Shenhav, A., \& Greene, J. D. (2010). Moral judgments recruit domain-general valuation mechanisms to

Distinct Utilitarian and Non-Utilitarian Behaviors

\log (Switch)

$=\beta_{0}+\beta_{1} \cdot E V D+\beta_{2} \cdot$ Condition $+\beta_{3} \cdot E V D \cdot$ Condition $+\varepsilon$

Common Striatal Responses across Conditions $(-24,8,-4) \quad \begin{gathered}\text { Main Effect of Outcome } \\ \text { Positive Frame }\end{gathered}$
$(24,11,2)$

Correspondence

Y-Hsuan Kao, ireneynkao@gmail.com
Chien-Te Wu, chientevincewu@@ail.com chien-Ie Wu, chientevinceww@gm
Joshua Goh, joshgoh@gmail.com

Whole Brain Differential Response Patterns

Conclusions
Neurobehavioral responses to arbitrate life and monetary value reflect utilitarian and non-utilitarian decision strategies
Utilitarian decisions monotonically track expected value for life and monetary outcomes whereas non-utilitarian decisions maintain status quo for life-for-cash options regardless of expected value
Cortical processing distinguished these two strategies bilateral temporoparietal, and right orbitofrontal areas in positive framed trials, and medial prefrontal areas in negative framed trials
Striatal responses dissociated life from monetary outcomes regardless f forfeit price.
Differential engagement of the above neural loci might influence the degree of utilitarian use of stimuli vs. endogenous conceptual ideals.

Acknowledgements
This work was supported by Taiwan Ministry Science and Technology (MOST) grants 105-2410-H-002-055-
MY3 and $107-2410$ H-H02-124-MY3

