

poster A41

Cognitive Neuroscience Society 2020 Virtual Meeting

Brain plasticity following Organizational Skills Training in elementary school students: A pilot resting-state study

Yuliya Yoncheva, Joanna Tabor, Shereen Elmaghrabi, Christina Di Bartolo, Greta Conlon, Eva Petkova, Howard Abikoff, Richard Gallagher & F Xavier Castellanos

Yuliya.Yoncheva@nyulangone.org osf.io/rsx36

Funding: NIMH Phased Innovation Award R61MH113663 (PI: F. Xavier Castellanos)

Background: organizational skills impairments

- Organizational, time management and planning deficits are frequent in children with neurodevelopmental disorders (such as ADHD) and contribute to school failure and conflicts at home.
- Unlike stimulant medication, evidence-based instruction-focused interventions can remediate such organizational dysfunction in elementary school students.

Background: quantification of organizational skills deficits

Children's Organizational Skills Scale (COSS)

- Age- and sex-normed scales capturing memory and materials management, organized actions, and task planning impairments
- Child, parent, teacher informants

e.g., COSS Parent questions:

1.	My child starts projects but doesn't complete them.				
2.	Once my child gets ready to do schoolwork or projects, he/she has trouble knowing how to start.		D ₂	D 3	4
3.	My child is organized.			 3	4
4.	My child seems to run out of time before school assignments are finished.		D ₂	D 3	4
5.	My child has to stay up late to finish school projects or homework.			D 3	4
6.	When my child has a big project to do, he/she doesn't know where to begin.	1		D 3	4
7.	When my child has to do something, she/he puts it off as long as possible.		D ₂	D 3	4

HARDLY EVER

MUCH OF

Background: externalizing organizational struggles (glitches)

4 specific "glitch characters" can obstruct child's calm completion of academic assignments:

Go-Ahead-*Forget-It* (track assignments)

Go-Ahead-*Lose-It* (manage materials)

Time Bandit (distract; delay)

Go-Ahead-*Don't-Plan* (long-term planning)

Background: Organizational Skills Training (OST)

Organizational Skills Training for Children with ADHD

> An Empirically Supported Treatment

Richard Gallagher, Howard B. Abikoff, and Elana G. Spira OST involves **individual sessions** with an OST therapist in which parents (and teachers remotely) receive training in behavior modification and children receive direct instruction and skills practice.

The child learns how to have the **Mastermind** control the glitches

Background: Promises & challenges of the original OST

OST produces robust sustained remediation

<u>J Consult Clin Psychol</u>. Author manuscript; available in PMC 2014 Feb 1. Published in final edited form as: <u>J Consult Clin Psychol. 2013 Feb; 81(1): 113–128.</u> Published online 2012 Aug 13. doi: 10.1037/a0029648

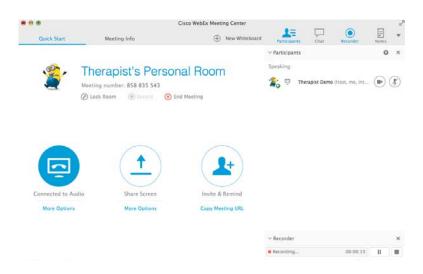
PMCID: PMC3549033 NIHMSID: NIHMS405441 PMID: <u>22889336</u>

Remediating Organizational Functioning in Children with ADHD: Immediate and Long-Term Effects from a Randomized Controlled Trial

Howard Abikoff, Richard Gallagher, Karen C. Wells, Desiree W. Murray, Lei Huang, Feihan Lu, and Eva Petkova

• Challenges to wider OST adoption: time + travel

20 in-person visits (twice a week) over 10 weeks during the school year

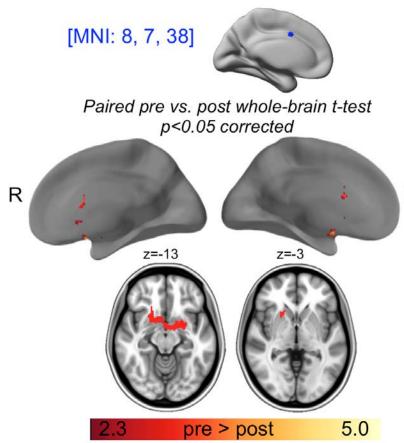

Current study: OST-modified (OSTm) to expand accessibility

12 in-person weekly sessions (school year) +

new **remote** means to increase frequency of contacts with the **OSTm** therapist

telepsychiatry

1. weekly 30-minute video session with parent & child at home


2. electronic Behavior Record:

the therapist receives child's **daily** points logs

Prior imaging study: OST produces resting-state Δ iFC

Seed-based dACC iFC

Fig. Resting-state fMRI data from open-label OST intervention in children with ADHD (n=15).

Significant post-OST changes in intrinsic functional connectivity (iFC) between dorsal Anterior Cingulate Cortex (dACC) and areas including ventral striatum.

Data not shown: improvement in parent-rated organizational skills (COSS-P scores) post-OST correlates with this Δ iFC (r₁₃=0.57, *p*<0.05).

Data: 3T Siemens Allegra, EPI: TR=2s, voxel: 3x3x4mm

OSTm imaging study: pre-registered neural target =

Δ resting-state iFC between dACC & aVS_{FP}

pre-registered at osf.io/5m5sx

Masks centered on pilot OST results spanning 3 network-defined subregions of anterior ventral striatum (**aVS**), corresponding to frontoparietal (**FP**), limbic & default mode networks [based on Yeo* 7-network functional striatal **parcellations**]

*Choi E, Yeo B, Buckner RL (2012) The organization of the human striatum estimated by intrinsic functional connectivity. *J Neurophysiol.* 108(8):2242-2263.

OSTm imaging study: question

Examine involvement of the pre-registered neural target (∆ iFC dACC–ventral striatum) in behavioral improvement following modified Organizational Skills Training (OSTm) in 3rd-5th graders with organizational impairments

OSTm imaging study: procedures

n=29 students in 3rd, 4th or 5th grade

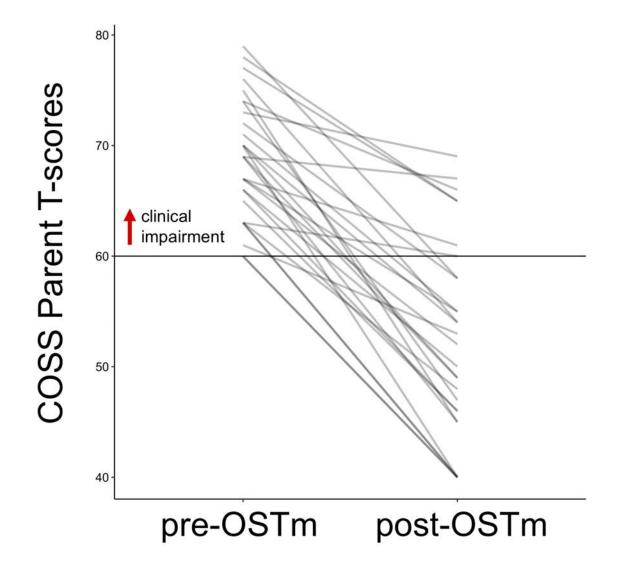
- Mean age: 9.1 years, girls n=9 (31%)
- Elevated (≥ 1SD) and impairing organizational deficits: Children's Organizational Skills Scales (COSS) Parent total T-scores
 - meeting DSM-5 criteria for ADHD not required
- IQ > 85; non-impaired language skills
- No paraprofessional help, no self-contained special ed. classroom
- Must provide high-quality pre-OSTm *fMRI* imaging data (FD_J < 0.13 mm, i.e., lower than clinical pediatric neuroimaging standards)

OSTm study: low head micro-motion (FD_J) during fixation scans

Jenkinson Framewise Displacement (**FD**_J)

	Pre-OSTm	Post-OSTm
Mean FD J	0.068 mm	0.070 mm
Min FD J	0.039 mm	0.037 mm
Max FD _J	0.103 mm	0.123 mm

Equivalent mean FD_J for pre- vs. post-OSTm fixation (resting-state) scans (two-one-sided tests procedure: $d_z=0.1$ significantly within $d_z\pm0.5$ equivalence bounds, $t_{28}=-2.2$, p<0.02)

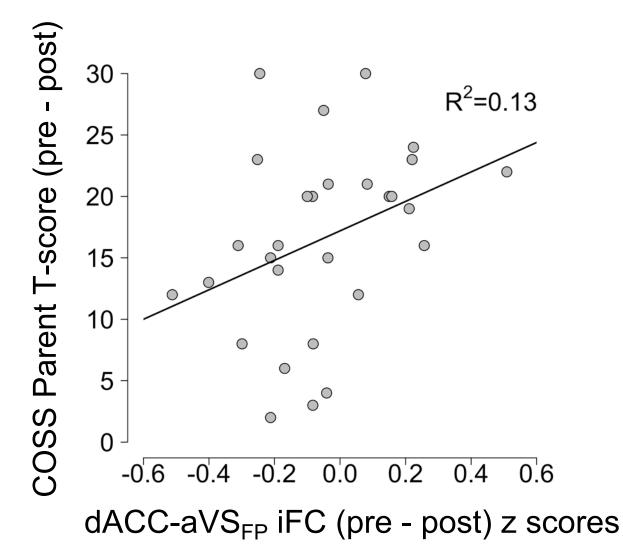


OSTm study: neuroimaging methods https://osf.io/rsx36/

- Acquisition
 - 3 Tesla Siemens Prisma
 - Adolescent Brain Cognitive Development study imaging protocol: T1 MPRAGE (0.8x0.8x0.8mm) EPI: 7-min fixation (TR=0.8s, 2.4x2.4x2.4mm)
- Image pre-processing and Seed-based Correlation Analysis
 - C-PAC v1.4.1 <u>https://fcp-indi.github.io/docs/user/index</u>
 - seed: **dACC** = MNI [8, 7, 38]
 - masks: [OST pilot clusters] ∩ [Yeo 7-network functional striatal parcellations]]
 = aVS_{FP} & aVS_{ALL} (pre-registered prior to R61MH113663 submission)
 - z-scored iFC between dACC and aVS_{FP} reported
 - Pearson's correlation between pre- minus post-OSTm COSS-Parent Total T-scores (i.e., behavioral outcome) and pre- minus post-OSTm z-scored iFC dACC-aVS_{FP} (i.e., neural target circuitry)

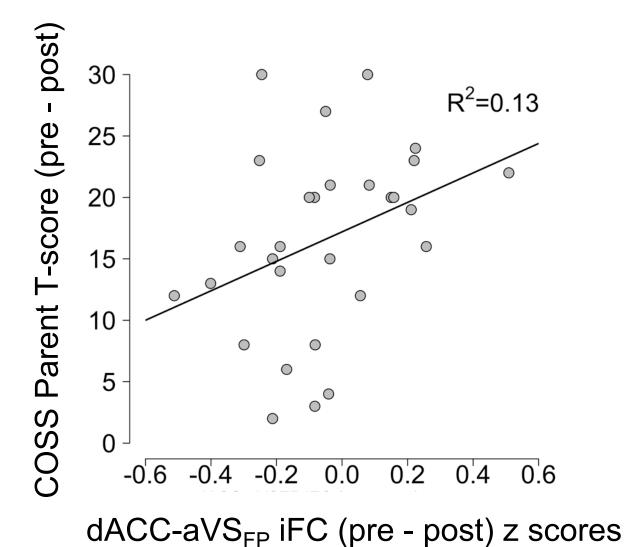
Results: Remediation of organizational deficits post-OSTm

Each child's parent-rated organizational dysfunction improved after OSTm (t₂₈=11.8, p<0.01; Cohen's d=2.2)



 Consistent robust behavioral effects: teachers and children also reported superior org. skills post-OSTm (both p<0.01, Cohen's d=0.88; d=0.67; data not shown).

*Higher scores indicate more frequent organizational deficits


Results: \triangle iFC neural target linked to post-OSTm behavioral gains

∆ strength of functional connectivity at rest (fixation) between the dACC & the pre-registered ventral striatal mask (within the frontoparietal network parcellation) accounts for **13% of the variance** of the improvement in organizational skills after OSTm intervention.

Results: \triangle iFC neural target linked to post-OSTm behavioral gains

Neural target engagement: Pre-OSTm vs post-OSTm changes in dACC-aVS_{ALL} iFC with effect size Cohen's d=0.40(n=29)or Cohen's d=0.49(n=28 without an outlier).

Summary

- Successful modification of evidence-based OST: OSTm is feasible, its video-sessions are acceptable to families and effective (80% of treated students fell below the clinical impairment cut-off after completing OSTm; self-report, parent and teacher ratings concur).
- Convergent pilot results and current findings with pre-registered brain masks suggest that the circuitry linking dACC and aVS may mediate OSTm improvement.
- If replicated, the association between robust OSTm-driven boosts in organizational, time management and planning skills & alterations in resting-state connectivity may enable exploration of the neural mechanisms of organizational dysfunction and its remediation.

