Contextual constraint and key membership influence neural correlates of melodic prediction violations

Tufts

Allison R. Fogel ${ }^{1}$, Emily Morgan², Gina R. Kuperberg ${ }^{1,3,4}$, Aniruddh D. Patel ${ }^{1}$

${ }^{1}$ Tufts University; ${ }^{2}$ University of California, Davis; ${ }^{3} \mathrm{MGH} / \mathrm{HST}$ Athinoula A. Martinos Center for Biomedical Imaging; ${ }^{4}$ Massachusetts General Hospital

Introduction

Melodic expectation has been extensively studied using behavioral and neural (ERP) methods.
In current ERP studies of language, predictions are often examined by manipulating sentence contexts.

- In contrast, neural studies of melodic prediction violations have mainly used incongruent events (e.g., out-of-key notes) in fixed melodic contexts

We have developed a new approach based on manipulating melodic context in terms of the degree to which it constrains expectations for one particular note. ${ }^{1}$ Using this method to study ERP responses to unexpected notes, we can disentangle the effect of a note being low probability (unexpected) from the effect of it also violating a strong expectation for another specific note.
-When a context leads to an expectation for one particular note, a different note can violate this prediction while still being in-key and congruous.

> High constraint

Low constraint

Methods

- Participants: at least 5 years of musical experience within the past 10 years - Task: listen attentively and answer occasional memory probes
- No acceptability judgments

Stimuli: 60 pairs of 10-15 note novel melodies that either did or did not lead to

Experiment 1: in-key target notes

Mispredicted plausible minus
Predicted Predicted

150-725 ms

$725-900 \mathrm{~ms}$

- In constraining melodies, unexpected notes elicit a bilateral frontal positivity relative to expected notes
expected notes
- No sign of the early anterior negativity (150-300 ms) often associated with musical expectancy violations ${ }^{2}$
- Observed a previously reported early anterior positivity: $280-600 \mathrm{~ms}^{3}$

Mispredicted plausible minus Unpredicted plausible

$300-600 \mathrm{~ms}$

- Unexpected notes in constraining melodies elicit a left-lateralized anterior positivity compared to unexpected notes in non-constraining melodies - Significant in time window of late anterior positivity in language studies ($600-900 \mathrm{~ms})^{4,5}$ - Begins earlier (significant at $300-600 \mathrm{~ms}$)

Experiment 2: out-of-key target notes

Mispredicted anomalous minus
Unpredicted anomalous

[^0]
Conclusion

- In Experiment 1, in-key target notes that violated a strong prediction (i.e., unexpected notes in a constraining melody) elicited a late anterior positivity compared to the same unexpected target notes in non-constraining melodies.
- This result differs notably from the early right anterior negativity that has previously been associated with musical expectancy violations. ${ }^{2}$
- In Experiment 2, out-of-key target notes elicited a late posterior positivity (P600) compared to expected notes in constraining melodies.
- Again, no early anterior negativity was observed.
- Across these experiments, we found brain responses to unexpected notes that differ from the responses reported by many music studies.
- However, these results bear a striking resemblance to the neural responses found in language studies using comparable manipulations of word expectedness and sentential constraint.

References

1. Fogel et al., 2015 Frontiers in Psychology
2. Miranda \& Ullman, 2007
3. Pearce et al., 2010
4. Kuperberg et al., 2019
5. Federmeier et al. 2007
6. Hsu. et al., 2015

Audio examples: bit.ly/Fogel-CNS

- Out-of-key notes vs. expected notes in constraining melodies elicit:
- No significant early effects (i.e., no ERAN)
- Late posterior positivity (P600)

[^0]: - Out-of-key notes in constraining melodies vs. out-of-key notes in non-constraining melodies: - More negative early frontal ERPs ${ }^{6}$ - More negative early frontal ERPs ${ }^{6}$. Late posterior positivity (P600) resembles sam

