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1) Importance of detecting depression:
• Mood disorders, such as major depressive disorder (MDD) afflict a

significant portion of the population and are a costly public health
issue.

• Characterization of day-to-day variation in symptoms of mood
disorders are limited and difficult.

2) Predicting depression from speech:
• Changes in voice have been associated with mood states and MDD.
• Remotely administered voice capture tasks are cost-effective mood

screener with tracking capability.
• Little consensus exists on the appropriate combinations of voice

features required to reliably characterize mood.
3) Machine learning (ML) techniques: 
• Analytically-justified and provide predictive capability.
• Consider the (supervised) technique support vector machine (SVM).

Background

Experimental Methods

Analysis and Findings
1) Overview of Voice Capture methodology: 

1) Participants:
• N=49 ages 18-68 (23 females; mean age = 26.6 ± 11.8)
• Completed self-report and voice capture-based assessments using

iPads.
• PHQ-9 was used to assess DSM-V symptoms of depression

experienced in the two-weeks preceding administration in adults.
2) Mood categorization of participants:
• PHQ-9 threshold = 9 was used to differentiate depressed vs. non-

depressed.
37 non-depressed:

23 with PHQ-9 scores of 0-4 (no/minimal depression)
14 with PHQ-9 scores of 5-9 (mild depression)

12 depressed
7 with PHQ-9 scores of 10-14 (moderate depression)
5 with PHQ-9 scores >14 (moderate/severe depression)

3) Tasks to capture speech recordings:
• Paragraph Reading task
• Story Teller task (spontaneous speech)
4) Evaluated phonetic, prosodic, and spectral features:
• Combine Praat features from three works: [1][2][3]

• Use two openSMILE feature sets:
IS10 paraling.conf, 1582 features [4]
IS13 ComParE.conf, 6373 features [5]
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Conclusions
• Results provide encouraging evidence for remotely recorded speech as an effective means 

of predicting depression.
• Voice intensity and phonetic features yield better predictive capability than spectral features.
• Larger number of features does not necessarily result in superior classification.
• Feature selection and pruning the feature space is important prior to training ML algorithm.

3) Predictive capability with combinations of Praat features:

• Performance with 31 Praat features (D+K+M) is poor: 
MLCA = 0.5, CPLCA-RU = 0.55, CPLCA-RD = 0.47 

• Voice intensity features (i.e. K) showed the best predictive capability: 
MLCA = CPLCA-RU = CPLCA-RD = 0.76 

• Phonetic features (i.e. D) also performed well: 
MLCA = 0.75, CPLCA-RU = CPLCA-RD = 0.76 

• Spectral features (i.e. M) showed poor predictive capability: 
MLCA = 0.54, CPLCA-RU = 0.57, CPLCA-RU = 0.49 

2) Machine learning specifics:
• SVM with linear kernel, C=60. 
• Leave one out (LOO) cross-validation analysis done across N=49 participants.
• Compute following metrics to assess predictive capability/accuracy:

LOOCi : LOO classification accuracy with ith participant left-out

MLCA: mean LOO classification accuracy        

CPLCA: cross-participant LOO classification accuracy  

FDR and MDR*: false discovery rate and missed diagnosis rate

5) Predictive capability with Praat features and feature pruning:
• Remove one feature at a time and do LOO analysis.
• Repeat over all combinations of two features.
• Below results for feature pruning are best cases attained in terms of predictive accuracy

• Best performance when pruning one feature SD[F2] (M-group)
MLCA = 0.667, CPLCA-RD = 0.653

• Best performance when pruning two features E[Min Int] (K-group) and E[BW2] (M-group):
MLCA = 0.72, CPLCA-RU = 0.82

• Noticeable improvements in performance when optimally pruning 1 and 2 features. 

 
Feature 

Group 

Feature 

Index (FI) 

Feature Description Designation 

DeJong (D) 
[1]  

1 # of syllables nsyll 
2 # of pauses/silences npause 
3 Duration of speech dur 
4 Phonation time phon time 
5 Speech rate (nsyll/dur) speechrate 
6 Articulation rate (nsyll/phon time) artic rate 
7 Average syllable duration ASD 

Kawahara 
(K) [2] 

8 Mean of the per-syllable average intensities 
calculated across the wav file. 

E[Avg Int]  

9 Mean of the per-syllable minimum intensities 
calculated across the wav file. 

E[Min Int]  

10 Mean of the per-syllable maximum intensities 
calculated across the wav file. 

E[Max Int]  

11 Average # of intervals in a .wav file E[# of intervals] 

Mielke 
(M) [3]  

12-21 Mean of first 5 formants and their associated 
bandwidths computed across the wav file. 

E[Fi], E[BWi]:  
i=1 to 5 

22-31 Standard deviation of first 5 formants and their 
associated bandwidths averaged across the wav file. 

SD[Fi], SD[BWi]: 
i=1 to 5 

 D K M D + K K + M D + M D + K + M 
(full feature 

set) 
# of features 7 4 20 11 24 27 31 

MLCA 0.75 0.76 0.54 0.7 0.57 0.66 0.5 
CPLCA-RU 0.76 0.76 0.57 0.76 0.65 0.73 0.55 
CPLCA-RD 0.76 0.76 0.49 0.73 0.53 0.61 0.47 

FDR 1.0 
(1/1) 

0.5 
(1/2) 

0.85 
(11/13) 

0.67 
(2/3) 

0.73 
(8/11) 

0.55 
(6/11) 

0.78  
(14/18) 

MDR 0.25 
(12/48) 

0.23 
(11/47) 

0.28 
(10/36) 

0.24 
(11/46) 

0.24 
(9/38) 

0.18 
(7/38) 

0.26  
(8/31) 

 

 D + K + M 
(full feature 

set) 

D + K + M 
(1 feature 
pruned) 

D + K + M 
(2 features 

pruned) 

# of features 31 30 29 
MLCA 0.5 0.67 0.72 

CPLCA-RU 0.55 0.76 0.82 
CPLCA-RD 0.47 0.65 0.76 

FDR 0.78  
(14/18) 

0.67 
(8/12) 

0.42 
(5/12) 

MDR 0.26  
(8/31) 

0.22 
(8/37) 

0.14 
(5/37) 

 

4) Predictive capability with openSMILE features:

• IS13 ComParE.conf features had better performance than IS10 paraling.conf features
MLCA = 0.75 vs. 0.61, and CPLCA-RD = 0.73 vs. 0.53 

 oS IS10p oS IS13cp 
# of features 1582 6373 

MLCA 0.61 0.75 
CPLCA-RU 0.76 0.76 
CPLCA-RD 0.53 0.73 

FDR 0.5 (4/8) 0.5 (3/6) 
MDR 0.2 (8/41) 0.21 (9/43) 

 

6) Compare predictive capability of Praat to openSMILE:
• Important to know which software and feature-group to consider. 
• openSMILE IS13 ComParE.conf performs better than Praat features.
• Optimal pruning of 2 Praat features performs better than two openSMILE options.

7) Examine correlation structure among 
voice features across participants:
• Compute Pearson correlation 

coefficients, and quantize into 3 
correlation levels.

• Large majority of features fall into the 
uncorrelated category. 

• openSMILE IS13 ComParE.conf two 
openSMILE options.

• Correlation structure among features 
does not translate into classifier 
performance and predictive capability.


