Predicting Depression from Speech Recordings: A Machine Learning and Feature Selection Approach

Siamak K. Sorooshyari¹, Thomas Van Vleet², Alit Stark-Inbar^{2,3}, Heather E. Dawes⁴, Deanna L. Wallace⁴, Morgan B. Lee⁴, Michael M. Merzenich², Edward F. Chang⁴, Mor Nahum⁵

¹Department of Integrative Biology, ³Department of Psychology, University of California Berkeley, Berkeley, CA, USA

²Department of R&D, Posit Science Corporation, San Francisco, CA, USA ⁴Department of Neurological Surgery, UC San Francisco, San Francisco, CA, USA

⁵Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel

Background

1) Importance of detecting depression:

- Mood disorders, such as major depressive disorder (MDD) afflict a significant portion of the population and are a costly public health issue
- Characterization of day-to-day variation in symptoms of mood disorders are limited and difficult.
- 2) Predicting depression from speech:
- Changes in voice have been associated with mood states and MDD. Remotely administered voice capture tasks are cost-effective mood screener with tracking capability.
- Little consensus exists on the appropriate combinations of voice features required to reliably characterize mood.
- 3) Machine learning (ML) techniques:
- · Analytically-justified and provide predictive capability.

Experimental Methods

1) Participants:

- N=49 ages 18-68 (23 females: mean age = 26.6 ± 11.8)
- Completed self-report and voice capture-based assessments using iPads.
- PHQ-9 was used to assess DSM-V symptoms of depression experienced in the two-weeks preceding administration in adults.

2) Mood categorization of participants:

- PHQ-9 threshold = 9 was used to differentiate depressed vs. nondepressed
- 37 non-depressed:
 - 23 with PHQ-9 scores of 0-4 (no/minimal depression) 14 with PHQ-9 scores of 5-9 (mild depression)
- 12 depressed
- 7 with PHQ-9 scores of 10-14 (moderate depression)
- 5 with PHQ-9 scores >14 (moderate/severe depression) 3) Tasks to capture speech recordings:
- Paragraph Reading task
- Story Teller task (spontaneous speech) 4) Evaluated phonetic, prosodic, and spectral features:

Combine Dreat features from the

nbine Praat features from three works: [1][2][3]						
Feature	Feature	Feature Description	Designation			
Group	Index (FI)					
	1	# of syllables	nsyll			
DeJong (D) [1]	2	# of pauses/silences	npause			
	3	Duration of speech	dur			
	4	Phonation time	phon time			
	5	Speech rate (nsyll/dur)	speechrate			
	6	Articulation rate (nsyll/phon time)	artic rate			
	7	Average syllable duration	ASD			
	8	Mean of the per-syllable average intensities calculated across the wav file.	E[Avg Int]			
Kawahara (K) [2]	9	Mean of the per-syllable minimum intensities calculated across the wav file.	E[Min Int]			
	10	Mean of the per-syllable maximum intensities calculated across the wav file.	E[Max Int]			
	11	Average # of intervals in a .wav file	E[# of intervals			
Mielke	12-21	Mean of first 5 formants and their associated bandwidths computed across the wav file.	E[Fi], E[BWi]: i=1 to 5			
(M) [3]	22-31	Standard deviation of first 5 formants and their associated bandwidths averaged across the wav file.	SD[F _i], SD[BW _i]: i=1 to 5			

Use two openSMILE feature sets:

IS10 paraling.conf, 1582 features [4] IS13 ComParE.conf. 6373 features [5]

- 2) Machine learning specifics:
- SVM with linear kernel, C=60. •
 - Leave one out (LOO) cross-validation analysis done across N=49 participants. Compute following metrics to assess predictive capability/accuracy:
 - LOOC_i: LOO classification accuracy with ith participant left-out
 - MLCA: mean LOO classification accuracy $MLCA = \frac{1}{N} \sum_{i=1}^{N} LOOC_i$
 - CPLCA: cross-participant LOO classification accuracy CSLCA = $\frac{1}{N}\sum_{i=1}^{N} 1(LOOC_i > 0.5)$
 - FDR and MDR*: false discovery rate and missed diagnosis rate

3) Predictive capability with combinations of Praat features:

	D	к	м	D + K	K + M	D + M	D + K + M (full feature set)
# of features	7	4	20	11	24	27	31
MLCA	0.75	0.76	0.54	0.7	0.57	0.66	0.5
CPLCA-RU	0.76	0.76	0.57	0.76	0.65	0.73	0.55
CPLCA-RD	0.76	0.76	0.49	0.73	0.53	0.61	0.47
FDR	1.0	0.5	0.85	0.67	0.73	0.55	0.78
	(1/1)	(1/2)	(11/13)	(2/3)	(8/11)	(6/11)	(14/18)
MDR	0.25	0.23	0.28	0.24	0.24	0.18	0.26
	(12/48)	(11/47)	(10/36)	(11/46)	(9/38)	(7/38)	(8/31)

- Performance with 31 Praat features (D+K+M) is poor:
- MLCA = 0.5, CPLCA-RU = 0.55, CPLCA-RD = 0.47
- Voice intensity features (i.e. K) showed the best predictive capability:
- MLCA = CPLCA-RU = CPLCA-RD = 0.76
- Phonetic features (i.e. D) also performed well:
- MLCA = 0.75, CPLCA-RU = CPLCA-RD = 0.76
- Spectral features (i.e. M) showed poor predictive capability: MLCA = 0.54, CPLCA-RU = 0.57, CPLCA-RU = 0.49

4) Predictive capability with openSMILE features:

	oS IS10p	oS IS13cp
# of features	1582	6373
MLCA	0.61	0.75
CPLCA-RU	0.76	0.76
CPLCA-RD	0.53	0.73
FDR	0.5 (4/8)	0.5 (3/6)
MDR	0.2 (8/41)	0.21 (9/43)

· IS13 ComParE.conf features had better performance than IS10 paraling.conf features MLCA = 0.75 vs. 0.61, and CPLCA-RD = 0.73 vs. 0.53

Analysis and Findings

- 5) Predictive capability with Praat features and feature pruning:
 - · Remove one feature at a time and do LOO analysis.
 - . Repeat over all combinations of two features.
 - Below results for feature pruning are best cases attained in terms of predictive accuracy

	D + K + M (full feature set)	D + K + M (1 feature pruned)	D + K + M (2 features pruned)
# of features	31	30	29
MLCA	0.5	0.67	0.72
CPLCA-RU	0.55	0.76	0.82
CPLCA-RD	0.47	0.65	0.76
FDR	0.78	0.67	0.42
	(14/18)	(8/12)	(5/12)
MDR	0.26	0.22	0.14
	(8/31)	(8/37)	(5/37)

- Best performance when pruning one feature SD[F₂] (M-group) MLCA = 0.667, CPLCA-RD = 0.653
- Best performance when pruning two features E[Min Int] (K-group) and E[BW₂] (M-group): MLCA = 0.72, CPLCA-RU = 0.82
- Noticeable improvements in performance when optimally pruning 1 and 2 features.

6) Compare predictive capability of Praat to openSMILE:

- Important to know which software and feature-group to consider.
- openSMILE IS13 ComParE.conf performs better than Praat features.
- · Optimal pruning of 2 Praat features performs better than two openSMILE options.

7) Examine correlation structure among voice features across participants:

- · Compute Pearson correlation coefficients, and quantize into 3 correlation levels.
- · Large majority of features fall into the uncorrelated category.
- openSMILE IS13 ComParE.conf two openSMILE options.
- Correlation structure among features does not translate into classifier performance and predictive capability.

Conclusions

50

30

- · Results provide encouraging evidence for remotely recorded speech as an effective means of predicting depression.
- Voice intensity and phonetic features yield better predictive capability than spectral features.
 - Larger number of features does not necessarily result in superior classification.
 - · Feature selection and pruning the feature space is important prior to training ML algorithm.

References

[1]: DeJong, N.H. & Wempe T. Praat script to detect syllable nuclei and measure speech rate automatically. Behav, Res. Methods., 2009.

[2]: Kawahara, S. get intensity min max.praat. Available from http://user.keio.ac.jp/~kawahara/resource.html, 2010.

[3]: Mielke, J. get_formants.praat. Available from https://phon.wordpress.ncsu.edu/lab-manual/scripts/praatscripting, 2019.

[4]: Schuller, B. et al. The INTERSPEECH 2010 paralinguistic challenge. Interspeech, 2010.

[5]: Schuller, B. et al. The INTERSPEECH 2013 computational paralinguistics challenge: social signals, conflict, emotion, autism. Interspeech, 2013.