

¹Laboratories of Cognitive Neuroscience, Boston, MA; ³Beijing, China; ⁴University of Capetown, Capetown, South Africa; ⁵Wayne State University, Detroit, MI

Introduction

- Prenatal alcohol exposure (PAE) affects brain resulting in deficits in a broad range of cognitiv reading^{4,5}.
- Compared to controls, alterations in white matt been observed in children and adolescents wit (FAS), which has been linked to their atypical
- However, to date, few studies have systematical neurobiological mechanisms underlying readin with FAS.

Methods

Participants:

93 adolescents, 26 full/partial FAS (FAS/PFAS; age exposed (HE) nonsyndromal (16.4 \pm 1.2 years), and recruited from Cape Town, South Africa. Groups bala

PAE Assessment/FAS Screening:

Mothers interviewed about drinking during and constructed from volume of absolute alcohol (AA) cor for growth and FAS anomalies using standard protoce

Behavioral Assessment:

Reading skill was assessed using the Gray Oral Read

MRI Acquisition:

MPRAGE and DTI acquired on a 3T Siemens Trio Brain Imaging Centre (CUBIC).

DTI Data Processing:

DTIPrep for detection and removal of artifactual vol head motion and eddy current correction¹¹, AFQ for eight reading-relate WM tracts - bilateral AF, SLF, ILF

Lateralization:

Lateralization index calculated as prior research s may contribute to reading impairment¹³.

LI = 100 x [left measure – right measure]/[right measure]

Statistical Analyses:

Potential group differences in WM mechanisms unde

- 1. One-way ANOVAs with group as between-subject variables
- 2. Linear regression models incorporating group, GORT scores and their interaction term

Atypical white matter mechanisms underlying reading development in adolescents with fetal alcohol spectrum disorders

Jade Dunstan¹, Xi Yu^{1,2,3}, Nadine Lindinger⁴, Ernesta M. Meintjes⁴, Sandra W. Jacobson⁵, Joseph L. Jacobson⁵, & Nadine Gaab^{1,2}

development <i>in utero</i> , ve domains ^{1,2,3} , including	A.
tter (WM) development have ith fetal alcohol syndrome cognitive abilities ^{6,7} .	
cally investigated the ng impairments associated	
	B. 0.46
	0.44
$e = 16.9 \pm 0.7$ years), 28 heavily of 39 controls (16.3 \pm 1.0 years) anced on age and gender.	0.44 0.42 4 0.42
	0.38
d after pregnancy. Measures onsumed. Participants examined col ⁸ .	Le Figure 1. Signification inferior longitudination of ILF (left hemistion
ading Test (GORT, 5 th edition) ⁹ .	significant group anisotropy (FA) of Post-hoc analyses among the three g
o scanner at Cape Universities	0.035), but not in le
olumes ¹⁰ , FSL/topup function for	
tractography ¹² . FA estimated for F, and IFOF.	A significant GOF driven by a signif of the LSLF in the
suggests reduced lateralization sure + left measure].	group. This indicated development ass impairments in in
erlying reading examined using: t variables	Compared to a ty with FAS/PFAS s previously linked

Discussion

ORT*group interaction effect was observed in LSLF, ificant association between GORT scores and FA ne control group but not in either alcohol-exposed cates atypical left-hemispheric WM tract sociated with PAE, which may underlie reading ndividuals with FAS.

typical leftward asymmetry in controls, adolescents showed a right-lateralization of the ILF, a WM tract d to reading abilities¹⁴. This result may suggest an increased right hemispheric reliance in the FAS/PFAS group.

References

- 1. Streissguth et al. (1991) JAMA
- 2.Coles et al. (1997) Alcoholism: Clinical and Experimental Research
- 3. Mattson et al. (1999) Alcoholism: Clinical and Experimental Research
- 4.Goldschmidt et al. (1996) Alcoholism: Clinical and Experimental Research
- 5.O'Leary et al. (2013) Journal of paediatrics and child health
- 6. Treit et al. (2013) Journal of Neuroscience
- 7.Fan et al. (2016) *Human Brain Mapping* 8.Hoyme et al. (2005) *Pediatrics*
- 9.Wiederholt & Bryant (2012) PRO-ED
- 10.Liu et al. (2010) International Society for Optics and Photonics.
- 11. Andersson et al. (2016) Neuroimage
- 12. Yeatman et al. (2012) PloS one
- 13.Niogi & McCandliss (2006) Neuropsychologia
- 14.Yeatman et al. (2012) PNAS