

Introduction

- Investigating social interaction through the lens of cognitive neuroscience is still in need
- Hyperscanning, the simultaneous recording of brain activity from multiple subjects, provides opportunities to investigate interactions in context
- As the most fundamental social unit, research on dyads informs group-based neuroscience research
- Electroencephalogram (EEG) provides high temporal clarity that allows for interactions to be adequately characterized

Research Question

How has dyadic hyperscanning been implemented?

- What types of social interactions can be investigated using this paradigm?
- What is the outcome measure?
- What's the advantages of mobile equipment?

Approach

- Summarize and synthesize studies using dyadic hyperscanning EEG paradigms
- Provide future study implications using this paradigm

Color Key

- Construct introduction
- Summarized results
- Implications for implementing paradigm

Example: parent-child dyadic EEG hyperscanning

Characterizing Social Interactions via Dyadic Hyperscanning Techniques

Ruohan Xia*, Runzhi Chen*, Kayden Stockwell, Tanya Evans University of Virginia

Basic Processes

Social gaze

- Eye contact, a basic social behavior
- Social gaze facilitates higher quality communication between infants and adults and promotes higher brain synchrony

Speech Rhythm

- The duration and interval of speech between two voices
- Promotes higher brain synchrony in communication
- Allows investigation on the reciprocal processes (eye contact or speech rhythm) in communication

Joint movement

- A form of behavioral synchrony characterized by movement synchrony or imitation
- Positively correlated with alpha-band brain synchrony

and brain synchrony

- more and more viable

*Equal Contribution

(<u>tanya@virginia.edu</u>) at any time.

- synchrony
- interactions
- (including leader-follower interactions)
- coordination stages
- contexts

- competitive) with contextual factors

Discussion

Dyadic EEG paradigms have been implemented in basic and complex social interactions investigations Brain synchrony in different frequency bands was observed as the outcome measure

Future directions

Due to relative immobility, most dyadic investigation happened within restricted laboratory settings With the development of mobile hyperscanning equipment, investigations of natural, in-context social interactions are becoming

Beyond dyads – explore potential individual-group interactions in classroom settings

CNS 2020 Poster A93

Complex Processes

Empathy

• Behaviors or brain activation led by emotional closeness Suggests physical contact may be associated with brain

Allows reciprocal analysis of complex social-emotional

Cooperation

Behavioral and cognitive coordination toward one goal

Higher brain synchrony was found in preparation and

Suggests higher brain synchrony, but can be modified by social

Competition

• Experiments evoke rivalry between participants

Feedback modifies brain synchrony – positive feedback fosters competitive behaviors and decreases synchrony Allows for synchrony analyses on both symmetrical (mirrored) and asymmetrical (differentiated) behaviors • Allows investigation of reciprocal interactions (cooperative or

