March Madness: Behavioral, physiological, and neural effects of surprise during naturalistic sports viewing

James W. Antony ${ }^{1}$, Thomas Hartshorne ${ }^{1}$, Ken Pomeroy ${ }^{2}$, Todd Gureckis ${ }^{3}$, Uri Hasson¹, Samuel D. McDougle ${ }^{4}$, Kenneth A. Norman ${ }^{1}$ Princeton University, ${ }^{2}$ www.kenpom.com, ${ }^{3}$ New York University, ${ }^{4}$ Yale University
Agents use sophisticated event models to predict characteristics of their environments ${ }^{1}$. As events unfold over time, agents implicitly and rapidly adjust their predictions based on these models, which can produce feelings of surprise ${ }^{2}$.
Surprise, or unsigned prediction error, tracks the difference between previous and current predictions ${ }^{2-5}$. According to Event Segmentation Theory (EST), surprise can drive the segmentation of ongoing experience into distinct event $6^{6.7}$. Surprise can also trigger learning that updates subsequent predictions about the structur We used sports games to understand how surprise influences perceived event segmentation, memory, eye physiology, and neural activation patterns in humans Operationalizations:
Predictions: "win probability" metrics from an expert basketball analyst (https://kenpom.com/) updated after each change in possession
Surprise: absolute value of the derivative of the win probability time course. We also compute "signed" prediction error if the subject prefers which team wins.

Segmentation correlated especially well with surprise opposing the current predominant belief

References - Dubiow, S., Rounani, N, Niv, Y, \& Norman, K. A. (2017). Does mental context

^Surprise, \uparrow Hidden Markov Model (HMM) state changes According to event segmentation theory (EST) ${ }^{7}$, surprise triggers segmentation ${ }^{9}$. HMMs offer a data-driven way of finding segments by identifying moments when neural patterns shift. We predict surprise leads to state changes in vmPFC

^Surprise, \uparrow memory for possessions Sample recall of specific possession: "Then Missouri had one last chance to win onds left ... but they missed the 3-pointer as the clock hit zero.

$r=0.36, p<0.005$

Take-home messages: - Surprise derived from real-world sports games map onto behavioral, physiological, and neural measures Results confirm predictions of EST: Possession changes with greater surprise $=>$ greater probability of HMM-identified state transition and memory for possessions, and signed surprise (for games where subjects preferred one team over another) predicted NAcc activity.

