BOSTON UNIVERSITY

Time Cell Population from Various Delays Show Similar Structures

Rui Cao Stephen Charczynski Marc Howard Center for Systems Neuroscience Boston University

Poster: E82 Contact:<u>caorui@bu.edu</u>

Episodic Memory is Compressed as Time Goes by

Time cell: temporal selectivity

delay

5-

3-

1.5-

2.5-

Time Cell:

- Sequentially activated cells after event onset
 - Temporal information can be decoded through time cells
- Each cell has a temporal receptive field (time-field)
 - Center: when the cell most active
 - Width: measures the selectiveness

10-5-13-6.5-10 time (sec)

MacDonald et al. 2011

Compression at neural level

- **Compression happens in 2 ways:**
 - More time cells fire shortly after the event; fewer ullettime cells fire when the event fades into the past
 - Early time cells are very selective; late time cells have wider time-fields
- In current study, we observed similar compression across multiple time cell data sets despite different delays.
- Through Hierarchical Bayesian method, we learned that compression is unlikely to be a simple trialaveraging effect but happens at both within and between trial level

Investigate the compression through Hierarchical Bayesian

Hierarchical Bayesian Model

Time cell populations from different delay/region/animal

Striking similarity between the time cell populations

Time cells sorted based on estimated mu

Results

- More time cells fire for early delay than late in all 3 data sets
 - 0 is excluded

Time-field width increases for later time cells

- Width increases at similar rate across 3 data sets despite different delays
- **Trial averaging Effect?**

Model within-trial time-field width and between-trial variability separetly

Model Assumptions:

 For each trial, the time cell fires mostly at the normal tuning curve + some random firing (uniform)

 $spike(t) = a_1 Normal(\mu_i, \sigma_w) + (1 - a_1) Uniform$

• The the time-field shift (early or late) from trial to trial

 $\mu_i \sim Normal(M_n, \sigma_t)$

- $\sigma_{\!\scriptscriptstyle W}$: quantifies trial-level selectiveness
 - σ_t : quantifies consistency across trials

Experiment:

 8 Rats in pair-association tasks with 8s delay; singleunit dHPC (Bladon et. al., 2018)

Time-field width increases for later cells: Not just trial-averaging effect

Top: estimated time field center vs. width; Bottom: estimated time-field center vs. between-trial consistency

The temporal uncertainty increased as delay continues

- Within-trial level: time-field width increases
- **Between-trial level: time-field shift** more from trial to trial

coordinated

- Significantly higher correlation between simultaneously recorded pairs (sameSession and sameTetrode) than random pairs.
- Could be due to internal or external cues

Simultaneously recorded cells correlate with each other

Each point represent a trial: x and y corresponding to the estimated mus of the trial for simultaneously recorded cell pair (cell 18 and 19). In trials where cell 18 fires relatively late, cell 19 is also likely to fire relatively late and vice versa, results in high correlation.

The between-trial shift is not random but

Future Direction

- **Incorporate the trial-level** estimation for all data sets and investigate the skewness of time cell distribution
- **Test different** assumptions of time field population distributions

Reference List:

Bladon, J. H., Ning, W., Werneck, L., Marino, F., Liu, C., Howard, M. W., Coding of What and When in Lateral Entorhinal Cortex and Hippocampus during a Delayed Matching Task [poster presentation]. SfN 2018 *Conference,* San Diego, CA, United States Bolkan, S. S., Stujenske, J. M., Parnaudeau, S., Spellman, T. J., Rauffenbart, C., Abbas, A. I., & Kellendonk, C. (2017). Thalamic projections sustain prefrontal activity during working memory maintenance. Nature neuroscience, 20(7), 987.

Cromer, J. A., Roy, J. E., & Miller, E. K. (2010). Representation of multiple, independent categories in the primate prefrontal cortex. Neuron, 66(5), 796-807. MacDonald, C. J., Lepage, K. Q., Eden, U. T., & Eichenbaum, H. (2011). Hippocampal "time cells" bridge the gap in memory for discontiguous events. Neuron, 71(4), 737-749.

Rakitin, B. C., Gibbon, J., Penney, T. B., Malapani, C., Hinton, S. C., & Meck, W. H. (1998). Scalar expectancy theory and peak-interval timing in humans. Journal of *Experimental Ps*Funding:

Funding: NIMH R01MH112169; NIMH R01MH095297; NIBIB R01EB022864

Contact:caorui@bu.edu

