Neural Processes Underlying Context-Sensitive Cognitive Flexibility Adjustments

Audrey Siqi-Liu, Tobias Egner, Marty Woldorff

Background

Adaptive behavior requires finding the optimal set-point between stability and flexibility based on context ${ }^{1}$

Context sensitive adjustments of flexibility: people switch between tasks with greater ease, i.e. exhibit lower switch costs, in contexts where they with greater ease, i.e. ex ${ }^{2}$

Previous studies identify 'neural switch costs' or cue and stimulus-locked ERP amplitude differences in response to switch v. repeat trials ${ }^{3,4}$

Question

How are contextual adjustments of flexibility reflected in neural processing?

Cued Task-Switching ($\mathrm{N}=30$)

30% v. 70% switch frequency blocks
2 tasks

- Cue = Letter/abcdef Consonant or Vowel?
- Cue = Digit/Number Odd or Even digit?

61 trials x 16 blocks
Cue-stimulus interval (CSI)

- Jittered 190 ms to 500 ms
- Constant response-stimulus interval (RSI)
Catch trials (cue-only)

EEG Preprocessing \& Analyses

Data is resampled to 250 hz and filtered at 0.05 to 30 hz . and referenced to average mastoids after interpolating noisy channels. ICA was used to remove blinks, eye movements and heart beats. Epoched between - 500 and 1500 , baselined from -300. Artifact rejection was conducted with an absolute thresholds between -+75 and - +95 , Statistical testing: dependent-samples two-tailed t test with a nonparametric
cluster-based Monte Carlo permutation test (10,000 repetitions) to correct for multiple comparisons

Behavioral Results

Switch costs scale inversely with switch frequency, reflecting strategic adaptation of cognitive flexibility.
Cue-Locked Analyses
Switch - Repeat

Task Sequence x Switch Frequency Interaction

$* * p=0.005$
256 to 280 ms $* \mathrm{p}=0.012$
296 to 376 ms

Switch-related ERP positivity
is reversed when switches
inforent is reversed when switches are
infrequent. This is dirven by
significant switch proportion infrequent. This is driven by
simnificant swith proportion
modulations in repeat trials modulations in repeat trials
$(\mathrm{p}=0.009,148$ to 20 ms
rather than switch trials (NS).

Stimulus-Locked Analyses

Switch - Repeat

Task sequence x Switch Frequency Interaction

$+\mathrm{p}=0.033$
132 to 229 ms

Target locked switch-related positivity is reversed around average response time onset. As before,
marginally significant interaction effect shows switch-related polarity inversion in infirequent switch block

Conclusions

Switch frequency modulates the relationship between switches and repeat trial ERP signatures at both the cue and stimulus processing stages
These effects are mainly driven by repeat trial changes across switch frequency conditions, mirroring behavioral results

Future directions: Time frequency analyses ${ }^{5}$ of frontal theta, or MVPA decoding ${ }^{6}$ of task rules or switch frequencies post-cue v. post-stimulus

References

Andind

