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Highlights
 We introduce a data-driven method for bootstrapping biologically plausible models

 Mutually-constraining analyses �nd models that best �t all available evidence

 Functional connectivity constraints improved MVPA accuracy

 Models simulated lesion-site appropriate impairment

 Models support direct tests of causation between connectivity and representation

Background
Models of Cognitive Processing in a Dynamic Brain
 Contemporary models assume cognitive processing occurs in dynamic brain networks

 Some regions appear to be functionally specialized by virtue of signals they process

 Determined by how they are connected

 E.g., populations receiving visual input will be involved in visual processing

 Brain-based models are aimed at identifying and explaining interactions among these 
functional networks

How are Brain-Based Cognitive Models Generated?
 Brain-based models are largely informed by traditional univariate methods (e.g. SPM)

 Compare observed voxel time courses in isolation to canonical HRF; measure �t

 Univariate models ignore potentially informative relationships with other regions

 If a region is only conditionally involved in a task, it will have poor �t using univariate 
GLM; weak test statistic fails to detect involvement in task

 MVPA accounts for holistic patterns not accounted for in GLM

 MVPA typically only performed within ROIs informed by univariate analyses 

 Neither GLM nor MVPA analyze data as a network

 Connectivity studies (e.g., fc-rsMRI) analyze data as a network but network elements are 
identi�ed using univariate methods                                                            

There is a disconnect between the belief that cognitive processes entail 
interacting brain networks, and contemporary analytic methods that 
ignore or fail to take full advantage of global network dynamics

A presentation of this poster can also be found in the CNS2020 Data Blitz, Session 3, Talk 6.

*Contact: cpmcnorg@bu�alo.edu



Multiple Constraint Network
Our solution is to leverage whole-brain MVPA and Connectivity in a single analytic approach

 Previous work [1] showed autoencoders can be used to encode functional connectivity

 Autoencoders capture correlations among encoded features

 Compression of pattern encodings performs a nonlinear Principle Components Analysis

 Implementations of autoencoders can be extended to include additional functionality

 Multivariate pattern analyses (MVPA) often employ PCA as a data reduction technique

 Suggests a single model containing both an autoencoder and MVPA classi�er

 Autoencoder component encodes functional connectivity from activity patterns

 MVPA classi�er learns categories associated with activity patterns

 Both category and functional connectivity encoded in the same model

 MVPA classi�cations will depend on the weights that also encode functional connectivity

 Model performance improves with training that updates weights

 Weight updates that a�ect classi�cation accuracy also a�ect functional connectivity and 
vice versa
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An autoencoder is a network that learns the set of weights {Whid , Wout} that allow it to reproduce a pattern in 
the input layer among the corresponding units in the output layer

The task is made challenging by the fact that the input pattern must be transmitted through a much smaller 
hidden layer, forcing the network to learn a compressed encoding of the input

These networks consequently learn a PCA representation of the data

The predictive relationship (i.e., partial correlation) between elements i and j can be estimated from the 
summed path weights between the corresponding input and output units, as in the �gure above



Functional Neuroimaging Procedures
Multisensory Imagery Task
 11 participants imagined concepts from three manipulable object categories

 Handheld Tools, Musical Instruments, Fruits & Vegetables

 Imagery was with respect to each of the 5 senses, fully crossed

 Blocked design: 6 runs x 5 blocks/run x 8 trials/block
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 Each block directed participants to imagine items from one of the three categories with 
respect to one of the �ve senses

 The same category did not appear twice in a row within a run

 All �ve sensorimotor imagery modalities were used exactly once per run

 Instructions and stimuli presented either visually or auditorily (eyes closed)

  Fully-crossed except visual imagery always presented auditorily and vice versa

Participants imagined a series of items 
from a single category (e.g., TOOLS) with 
respect to a single modality (e.g., SOUND). 
Instructions and stimuli were presented 
either visually (a) or auditorily (b)

Sound imagery always used visual 
presentation and visual imagery always 
used auditory presentation.

This was to minimize interference of e.g., 
visual perception on visual imagery

Machine Learning Procedures
Data Preparation
 BOLD time series coregistered to anatomical volumes processed in FreeSurfer

 T1w volume parcellated into 1000 cortical surface plus 16 subcortical volume ROIs

 Time series averaged over all functional voxels in each ROI

 Computed median signal in 6-second window following each trial onset within each ROI

 Median signal across all ROIs used as the whole-brain activity pattern for that trial

 240 (trials) x 1016 (ROI) matrix of BOLD patterns per session

 Each pattern tagged with respect to category (Tool, Instrument, Fruit)



Multiple Constraint Network Implementation
 Implemented in Python using TensorFlow/Keras

 Models comprise two intertwined modules: an Autoencoder and a Classi�er

 Autoencoder and Classi�ers have their own output layers

 Both Autoencoder and Classi�ers share a common input layer

  1016-unit input layer to represent activity across all ROIs for each trial
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Multiple Constraint Network Training
 K-folds cross-validation

 Randomly subdivides entire dataset into k folds of training and testing patterns

 In each fold, some proportion (.8) used as training data and the remainder is witheld

 At the end of training, test model on witheld validation set patterns

  Assesses model’s ability to generalize to new data

 Across all K folds, each pattern used as a validation set pattern exactly once

 Each validation fold generates a unique model from random starting parameters and 
training history

 R random training replications x K folds generates RK unique models

  Sample of random models permitting statistical tests on model distributions

 Stochastic iterative training

 For each BOLD pattern:

 Activate pattern in input layer

 Attempt to reproduce pattern in Autoencoder output layer

 Attempt to categorize pattern (Tool, Instrument, Fruit)

 Di�erence between obtained and target outputs determines required adjustments

  Algorithm called Stochastic Gradient Descent

  Weight adjustments a�ect all weights to improve both autoencoder and classi�er



Results
Multiple Constraint Model Performance
 Signi�cantly better than chance classi�cation

 Category identity recovered from coarse-level whole-brain activity

 Autoencoders enhanced classi�cation accuracy in CAT/AE models

 Compared to otherwise identical CAT/- models without an autoencoder

 Functional connections not well-recovered from category training alone

 Post-hoc autoencoders generated from yoked-weights in CAT/- (category-only) models 
did poorly at reproducing input patterns
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Classi�cation accuracy vs. chance (.33) for classi�er networks trained with 
an autoencoder (CAT/AE) and identical sibling models trained without an 
autoencoder (CAT/-)

Both types of models classi�ed with signi�cantly better than chance 
accuracy but CAT/AE models classi�ed with signi�cantly higher accuracy 
than CAT/- models

Simulating Semantic Memory Impairment
 Hypothesis: Functional connectivity is causally related to categorization in models

 Prediction: Disrupted connectivity should produce plausible categorization impairments

 Identi�ed lesion sites from clinical literature associated with impairments to tool, musical 
instrument or fruit/vegetable knowledge

 Perturbed activity patterns in random subset of lesion sites either consistent or inconsis-
tent with target category; look for a triple dissociation

 Is a tool-selective impairment induced by lesions to sites associated with tool 
impairments? Yes, if connectivity is causally related to categorization

 Is a tool-selective impairment induced by lesions to sites associated with fruit or 
musical instrument impairments? Not if connectivity is causally related to 
categorization

-0.3

-0.2

-0.1

0

0.1

0.2

Tool Instrument Fruit

CAT/AE

CAT/–

C
at

eg
or

y-
S

el
ec

tiv
e 

P
ro

po
rti

on
al

 A
cc

ur
ac

y 
C

ha
ng

e

 Main e�ect for network
  Only Multiple Constraint 

Networks produced selective 
impairments
 Triple dissociation: All category- 

selective impairments were lesion-site 
appropriate
  E.g., selective impairments for 

tools not observed for lesions to sites 
not associated with impairments of 
tool knowledge



Multivariate Brain Mapping
 Simulated electrocortical stimulation

 Goal: Identify categorical a�liation of each region
 Toggle each region while holding activity in all other regions at constant baseline
 Measure change in activity across category units
 Toggling categorically a�liated regions should cause a disproportionate change in 

corresponding categorization units
 Repeat toggling simulation over a sample of trained models

We can assess whether a region is strongly 
a�liated with one of the target categories by 
comparing classi�er unit activity when the 
region is “on” vs. “o�”

This illustration depicts a hypothetical toggling 
of a region within the lateral occipitotemporal 
cortex (”o�” = 0, left; “on” = 1, right)

In this example, only the tool classi�er unit 
shows a large di�erence between the toggled 
states

We might infer this region is important for 
representing tools

Summary of Brain Mapping Findings 
 Tool-a�liated regions (red):
 l. lateral occipitotemporal
  visuomotor integration [2]
 r. middle temporal 
  3rd person action viewing [3]
 l. pars opercularis 
  tool naming [2]

 Instrument-a�liated regions (yellow)
 bilateral superior temporal gyrus
  auditory processing [4]
 r. middle temporal 
  3rd person action viewing [3]
 Fruit/Vegetable-a�liated regions (green)
 l. insula
  appetitive control; taste evaluation [5]
 l. visual area V4 
  color discrimination
 r. superior frontal gyrus
  discriminating high/low caloric foods [6]

Colored spheres (tool, instrument, fruit) indicate 
regions where classi�er unit change for target 
category was at least two orders of magnitude greater 
than for non-target categories combined. 
Sphere size is proportional to log-scaled a�iliation
Brain mapping test of category a�lation identi�ed 
areas with known or theoretically-relevant ties to the 
target categories
May be a useful tool for hypothesis generation and 
testing and discovery 
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