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Highlights
 We introduce a data-driven method for bootstrapping biologically plausible models

 Mutually-constraining analyses �nd models that best �t all available evidence

 Functional connectivity constraints improved MVPA accuracy

 Models simulated lesion-site appropriate impairment

 Models support direct tests of causation between connectivity and representation

Background
Models of Cognitive Processing in a Dynamic Brain
 Contemporary models assume cognitive processing occurs in dynamic brain networks

 Some regions appear to be functionally specialized by virtue of signals they process

 Determined by how they are connected

 E.g., populations receiving visual input will be involved in visual processing

 Brain-based models are aimed at identifying and explaining interactions among these 
functional networks

How are Brain-Based Cognitive Models Generated?
 Brain-based models are largely informed by traditional univariate methods (e.g. SPM)

 Compare observed voxel time courses in isolation to canonical HRF; measure �t

 Univariate models ignore potentially informative relationships with other regions

 If a region is only conditionally involved in a task, it will have poor �t using univariate 
GLM; weak test statistic fails to detect involvement in task

 MVPA accounts for holistic patterns not accounted for in GLM

 MVPA typically only performed within ROIs informed by univariate analyses 

 Neither GLM nor MVPA analyze data as a network

 Connectivity studies (e.g., fc-rsMRI) analyze data as a network but network elements are 
identi�ed using univariate methods                                                            

There is a disconnect between the belief that cognitive processes entail 
interacting brain networks, and contemporary analytic methods that 
ignore or fail to take full advantage of global network dynamics

A presentation of this poster can also be found in the CNS2020 Data Blitz, Session 3, Talk 6.

*Contact: cpmcnorg@bu�alo.edu



Multiple Constraint Network
Our solution is to leverage whole-brain MVPA and Connectivity in a single analytic approach

 Previous work [1] showed autoencoders can be used to encode functional connectivity

 Autoencoders capture correlations among encoded features

 Compression of pattern encodings performs a nonlinear Principle Components Analysis

 Implementations of autoencoders can be extended to include additional functionality

 Multivariate pattern analyses (MVPA) often employ PCA as a data reduction technique

 Suggests a single model containing both an autoencoder and MVPA classi�er

 Autoencoder component encodes functional connectivity from activity patterns

 MVPA classi�er learns categories associated with activity patterns

 Both category and functional connectivity encoded in the same model

 MVPA classi�cations will depend on the weights that also encode functional connectivity

 Model performance improves with training that updates weights

 Weight updates that a�ect classi�cation accuracy also a�ect functional connectivity and 
vice versa
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An autoencoder is a network that learns the set of weights {Whid , Wout} that allow it to reproduce a pattern in 
the input layer among the corresponding units in the output layer

The task is made challenging by the fact that the input pattern must be transmitted through a much smaller 
hidden layer, forcing the network to learn a compressed encoding of the input

These networks consequently learn a PCA representation of the data

The predictive relationship (i.e., partial correlation) between elements i and j can be estimated from the 
summed path weights between the corresponding input and output units, as in the �gure above



Functional Neuroimaging Procedures
Multisensory Imagery Task
 11 participants imagined concepts from three manipulable object categories

 Handheld Tools, Musical Instruments, Fruits & Vegetables

 Imagery was with respect to each of the 5 senses, fully crossed

 Blocked design: 6 runs x 5 blocks/run x 8 trials/block
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 Each block directed participants to imagine items from one of the three categories with 
respect to one of the �ve senses

 The same category did not appear twice in a row within a run

 All �ve sensorimotor imagery modalities were used exactly once per run

 Instructions and stimuli presented either visually or auditorily (eyes closed)

  Fully-crossed except visual imagery always presented auditorily and vice versa

Participants imagined a series of items 
from a single category (e.g., TOOLS) with 
respect to a single modality (e.g., SOUND). 
Instructions and stimuli were presented 
either visually (a) or auditorily (b)

Sound imagery always used visual 
presentation and visual imagery always 
used auditory presentation.

This was to minimize interference of e.g., 
visual perception on visual imagery

Machine Learning Procedures
Data Preparation
 BOLD time series coregistered to anatomical volumes processed in FreeSurfer

 T1w volume parcellated into 1000 cortical surface plus 16 subcortical volume ROIs

 Time series averaged over all functional voxels in each ROI

 Computed median signal in 6-second window following each trial onset within each ROI

 Median signal across all ROIs used as the whole-brain activity pattern for that trial

 240 (trials) x 1016 (ROI) matrix of BOLD patterns per session

 Each pattern tagged with respect to category (Tool, Instrument, Fruit)



Multiple Constraint Network Implementation
 Implemented in Python using TensorFlow/Keras

 Models comprise two intertwined modules: an Autoencoder and a Classi�er

 Autoencoder and Classi�ers have their own output layers

 Both Autoencoder and Classi�ers share a common input layer

  1016-unit input layer to represent activity across all ROIs for each trial
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Multiple Constraint Network Training
 K-folds cross-validation

 Randomly subdivides entire dataset into k folds of training and testing patterns

 In each fold, some proportion (.8) used as training data and the remainder is witheld

 At the end of training, test model on witheld validation set patterns

  Assesses model’s ability to generalize to new data

 Across all K folds, each pattern used as a validation set pattern exactly once

 Each validation fold generates a unique model from random starting parameters and 
training history

 R random training replications x K folds generates RK unique models

  Sample of random models permitting statistical tests on model distributions

 Stochastic iterative training

 For each BOLD pattern:

 Activate pattern in input layer

 Attempt to reproduce pattern in Autoencoder output layer

 Attempt to categorize pattern (Tool, Instrument, Fruit)

 Di�erence between obtained and target outputs determines required adjustments

  Algorithm called Stochastic Gradient Descent

  Weight adjustments a�ect all weights to improve both autoencoder and classi�er



Results
Multiple Constraint Model Performance
 Signi�cantly better than chance classi�cation

 Category identity recovered from coarse-level whole-brain activity

 Autoencoders enhanced classi�cation accuracy in CAT/AE models

 Compared to otherwise identical CAT/- models without an autoencoder

 Functional connections not well-recovered from category training alone

 Post-hoc autoencoders generated from yoked-weights in CAT/- (category-only) models 
did poorly at reproducing input patterns

0.33

0.35

0.37

0.39

0.41

0.43

0.45

0.47

CAT/AE CAT/–

Classi�cation accuracy vs. chance (.33) for classi�er networks trained with 
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Both types of models classi�ed with signi�cantly better than chance 
accuracy but CAT/AE models classi�ed with signi�cantly higher accuracy 
than CAT/- models

Simulating Semantic Memory Impairment
 Hypothesis: Functional connectivity is causally related to categorization in models

 Prediction: Disrupted connectivity should produce plausible categorization impairments

 Identi�ed lesion sites from clinical literature associated with impairments to tool, musical 
instrument or fruit/vegetable knowledge

 Perturbed activity patterns in random subset of lesion sites either consistent or inconsis-
tent with target category; look for a triple dissociation

 Is a tool-selective impairment induced by lesions to sites associated with tool 
impairments? Yes, if connectivity is causally related to categorization

 Is a tool-selective impairment induced by lesions to sites associated with fruit or 
musical instrument impairments? Not if connectivity is causally related to 
categorization
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Multivariate Brain Mapping
 Simulated electrocortical stimulation

 Goal: Identify categorical a�liation of each region
 Toggle each region while holding activity in all other regions at constant baseline
 Measure change in activity across category units
 Toggling categorically a�liated regions should cause a disproportionate change in 

corresponding categorization units
 Repeat toggling simulation over a sample of trained models

We can assess whether a region is strongly 
a�liated with one of the target categories by 
comparing classi�er unit activity when the 
region is “on” vs. “o�”

This illustration depicts a hypothetical toggling 
of a region within the lateral occipitotemporal 
cortex (”o�” = 0, left; “on” = 1, right)

In this example, only the tool classi�er unit 
shows a large di�erence between the toggled 
states

We might infer this region is important for 
representing tools

Summary of Brain Mapping Findings 
 Tool-a�liated regions (red):
 l. lateral occipitotemporal
  visuomotor integration [2]
 r. middle temporal 
  3rd person action viewing [3]
 l. pars opercularis 
  tool naming [2]

 Instrument-a�liated regions (yellow)
 bilateral superior temporal gyrus
  auditory processing [4]
 r. middle temporal 
  3rd person action viewing [3]
 Fruit/Vegetable-a�liated regions (green)
 l. insula
  appetitive control; taste evaluation [5]
 l. visual area V4 
  color discrimination
 r. superior frontal gyrus
  discriminating high/low caloric foods [6]

Colored spheres (tool, instrument, fruit) indicate 
regions where classi�er unit change for target 
category was at least two orders of magnitude greater 
than for non-target categories combined. 
Sphere size is proportional to log-scaled a�iliation
Brain mapping test of category a�lation identi�ed 
areas with known or theoretically-relevant ties to the 
target categories
May be a useful tool for hypothesis generation and 
testing and discovery 
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