Distributional learning of non-native contrasts in speakers of two languages, English and Korean

Mihye Choi1, Yoonsung Kim², Youngon Choi2, Mohinish Shukla1

1Baby Lab, Psychology Dept., University of Massachusetts Boston, MA, USA
${ }^{2}$ Child Development Lab, Psychology Dept., Chung-Ang University, Seoul, Korea

INTRODUCTION \& CURRENT STUDY

Sensitivity to distributional properties of phonetic tokens, distributional learning, has been hypothesized to induce appropriate underlying phonemic categories ([1],[2]), such that listeners infer two underlying phonemes from a bimodal distribution of tokens along an acoustic continuum, and a single phoneme from a unimodal distribution
English (No discrimination)

 variability around the pronunciation of " d ". Examples are from [3]
Separately, Korean and American English speakers differ in their use of voice-onset time (VOT) and fundamental frequency (f0) to classify stop consonants ([4],[5]) and the native speech experience can affect foreign speech perception ([6])

Experiment 1: examined how Korean and English speakers discriminate a Hindi continuum that changes on both VOT and f0.

Possibility 1: Koreans would be worse than English speakers to discriminate the continuum

Having 3 different categories may cause more interference (perceptual assimilation model, [6])
Possibility 2: Koreans would be better than English speakers Attending multiple cues (VOT, f0) can be advantageous Experiment 2: tested if the group difference in Experiment 1 leads Korean speakers to have sensitivity to distributional learning of the non-native Hindi contrast.

AUDITORY CONTINUUM

- 8-step continuum from Hindi [ba] to [pa] that changes on both VOT, f0 $\begin{array}{cc}\text { /ba/-like } & \text { /pa/-like } \\ \text { tokens } \$ \\end{array}

T2 T3
T5 $\begin{array}{lll}\text { T6 } & \text { T7 }\end{array}$

METHODS

IDENTIFICATION \& DISCRIMINATION TASK

Participants: 23 native Koreans ($f=17$, age ranged from 18-31) and 23 native English speakers ($f=15$, age ranged from 19-38)

IDENTIFICATION TASK
-Stimulus presentation: Each token from continuum was randomly presented (total 160 trials, 4 blocks of 40 trials)

ternative forced choice
DISCRIMINATION TASK
Stimulus presentation (40 trials of 4 block) -Easy across: token 1-7, 2-8
-Hard across: token 3-5, 4-6
-Within: token 1-3, 2-4, 5-7, 6-8
Participants: 32 Korean speaker
Bimodal condition: $n=16$ ($f=12$, age ranged from 18-28)

- Unimodal condition: $\mathrm{n}=16$ ($\mathrm{f}=8$, age ranged from 19-25) PRACTICE (10 trials)
Stimulus presentation: 10 pairs of Korean words
'half the trials were 'same' trials and the other half was 'different' trials
-Task: Participants judged whether the sound pair heard was same or different by pressing appropriate keys

ACQUISITION PHASE (Bimodal vs. Unimodal)
Stimulus presentation: the continuum was presented in psuedo-random order
in either bimodal or unimodal distribution (16 tokens of 12 blocks, ISI of 500 ms) bimodal: the 8 tokens on the continuum were presented in a bimoda frequency distribution (similar to Fig. 1, right graph)
unimodal: the same tokens in a unimodal distribution (similar to Fig. 1, left)
-Task: One filler sound 'ma' was presented per block and participants were asked to press [space bar] when they heard a 'ma' sound

TEST (40 trials)

-Stimulus presentation : Only token 1 (T1) and token 8 (T8)
.'same' trial: a pair of T1 or T8, 'different' trial: a pair of T1 \& T8 (or T8 \& T1) -Task:

An example of 'same' trial An example of 'different' trial

IDENTIFICATION

Identification accuracy
Significant effects of language group (estimate $=-0.43, \mathrm{SE}=0.061, \mathrm{z}=-7.131$, $\mathrm{p}<.001$) and of tokens (estimate $=-0.37$, SE = 0.015, $z=-25.149, p<.001$)

DISCRIMINATION

Discrimination accuracy

- Significant effects of language group (estimate =31, $\mathrm{SE}=.05, \mathrm{z}=-6.10, \mathrm{p}<.001$), and block (block $1-3$, estimate $=.18, \mathrm{SE}=.07, \mathrm{z}=2.60, \mathrm{p}=.009$; block 1-4, estimate $=.35, \mathrm{SE}=.07, \mathrm{z}=4.96, \mathrm{p}$ < 001), and pair type (easy-hard, estimate $=-0.37$, $\mathrm{SE}=.07, \mathrm{z}=-5.49, \mathrm{p}<.001$; easy-within, estimate= $0.47 \mathrm{SE}=0.06, z=7.63, p<001$)

DISTRIBUTIONAL LEARNING

Same

Different Distributional learning
No signifiant differences on same trials between two conditions, but marginally significant different on different trials $(p=.07)$

In Exp. 1, Koreans discriminated Hindi /ba/ and/pa/ contrast better than English speakers, supporting Possibility 2. And it may lead Korean speaker to be sensitive to distributional learning of non-native contrast in Exp. 2.
Testing English speakers' sensitivity to distributional information will further address if the findings indeed results from the difference of two groups of speakers in their use of phonetic cues.

