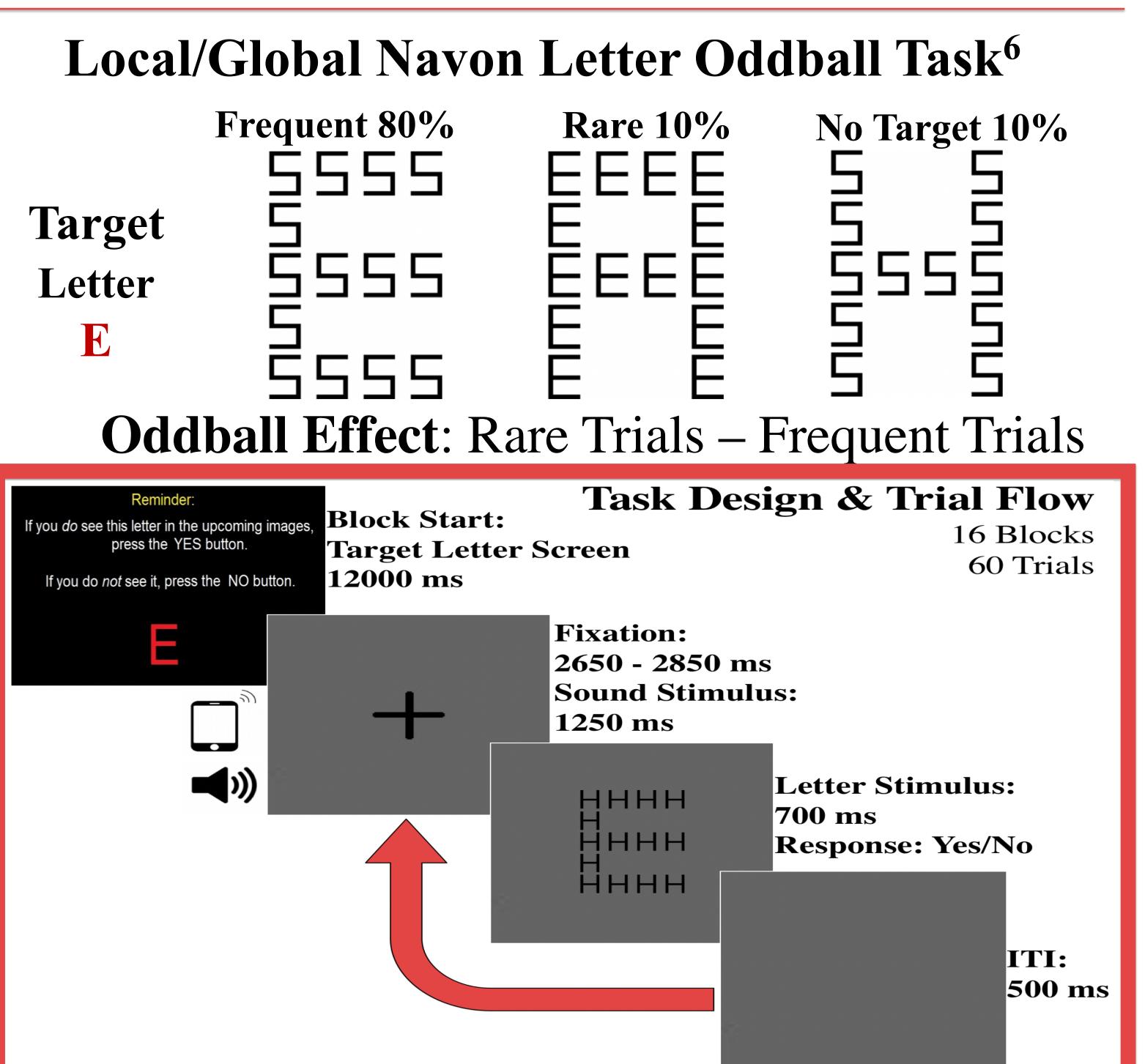
The Hidden Cost of a Smartphone: Behavioral and neural correlates of attention and cognitive control related to smartphone distraction. Joshua D. Upshaw¹, Carl E. Stevens, Jr.¹, Giorgio Ganis², & Darya L. Zabelina¹

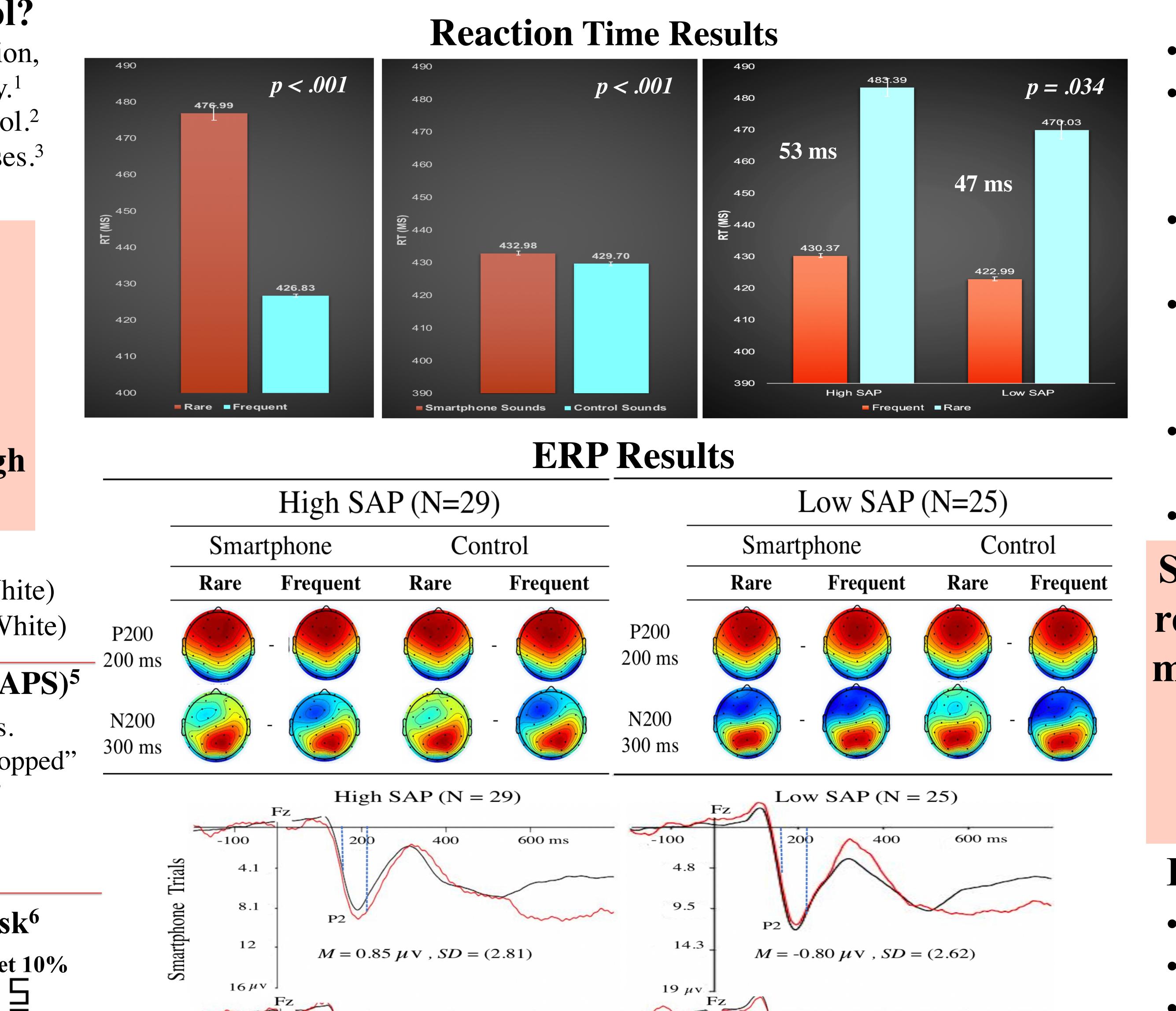
Smartphones and Cognitive Control?

- Heavy smartphone users show impaired attention, cognitive processing, frontal cortex excitability.¹
- Frontocentral N2 implicated in cognitive control.² • Frontocentral P2 reflect early attention processes.³
- Smaller N2 after smartphone sounds.⁴

Goals of the Study


- Measure cognitive control using the Oddball Effect (RT & N2 ERPs)
- **Do smartphone notifications affect** cognitive control and attention?
- Do these effects differ for people high or low in smartphone addiction?

Methods & Procedure


RT: N = 69 (Age = 19.76, 52% Female, 80% White) ERP: N = 54 (Age = 19.96, 56% Female, 83% White)

Smartphone Addiction Proneness Scale (SAPS)⁵

- 15-item scale: (1(Disagree) 4 (Agree)) four factors.
- Disturbance of functions "My school grades dropped"
- Virtual life orientation "I lost the entire world."
- Withdrawal "It would be painful"
- Tolerance "try cutting my usage time, but fail."

Department of Psychology, University of Arkansas¹, School of Psychology, University of Plymouth²

			ERP	Resu	lts			
	High SA	P(N=29)	_	Low SAP (N=25)				
Smartphone Control				Smart	phone	С	Control	
Rare	Frequent	Rare	Frequent		Rare	Frequent	Rare	Frequent
	-		-	P200 200 ms		-		-
			-	N200 300 ms				
High SAP (N = 29)				Low SAP (N = 25)				
-100 4.1 8.1	P2	400	600 ms	-100 4.8 9.5	20		600 n	ns
and 11 12	M = 0.8	$5 \mu v$, $SD =$	(2.81)	14.	M = -	$0.80~\mu v$, SD	= (2.62)	
Ω 16μν	Fz			19 µ	Fz			
-100 3.8 7.5 11.3	8	400	600 ms	100 5.			600 m	s
5 11.3	M = 0.5	$5 \mu v$, $SD =$	(2.70)	1	_	$1.00 \mu v$, SD =	= (2.62)	
15 µ v				20 µ	\mathbf{v}			
		High SAPS	5 (n = 29)	Low S	SAPS $(n = 25)$	5)		
		Mean (SD)		N	Iean (SD)	t	р	d
		7.46 µv	. ,)7 μv (3.91)	2.72	.009	.74
$\frac{N200 \text{ at } F_{2}}{D2 \text{ OE}}$	3	$\frac{3.44 \mu v}{0.70}$	· · · ·		$\frac{0 \mu v (3.64)}{1 (1.70)}$	1.84	.104	.45
P2 OE		$0.70 \mu \mathrm{V}$			$1 \mu v (1.70)$	-1.22	.228	.33
N2 OE P2 Smartp	hone	0.19 μv 7.44 μv	· · ·		$\frac{57 \mu v (1.80)}{0 \mu v (4.10)}$	-1.37 2.24	.176	.37
P2 Smartp P2 Control					$53 \mu v (3.89)$	2.24	.029	.30 .86
N2 Smartp		7.48 μv (3.20) 3.27 μv (3.11)			$1 \mu v (3.57)$	1.52	.135	.80
N2 Contro		$3.62 \mu v$	· · · ·		$9 \mu v (3.85)$	1.92	.098	.45
		OE Diffe	· · ·		Difference			
P2		0.30			-1.81 µv	2.13	.035	.41
N2		-0.65	-		$-1.45 \mu v$	0.81	.419	.43

Conclusions

- An overall Oddball Effect was found. • Overall, people responded slower on trials with smartphone sounds vs control sounds.
- For RT, cognitive control was worse for people higher in SAP.
- P2 (early attention) overall was smaller for people higher in SAP regardless of the sound played.
- For P2, the oddball effect was smaller for people higher in SAP
 - N2 did not differ by SAP

martphone notifications delayed eaction time for everyone. People nore addicted to their devices had

worse cognitive control and attention when they heard

smartphone notifications.

Limitations & Future Directions

- Non-jittered ITI for auditory ERPs Non-sound condition
- Objective measure of smartphone use Improve ecological validity of lab based EEG studies with virtual reality Introduce attention training paradigms such as mindfulness interventions

References

er, H. H., Sherman, L. E., & Chein, J. M. (2017). Smartphones and cognition: A review of irch exploring the links between mobile technology habits and cognitive tioning. Frontiers in Psychology, 8, 605.

ein, J. R., & Van Petten, C. (2008;2007;). Influence of cognitive control and mismatch on 2 component of the ERP: A review. *Psychophysiology*, 45(1), 152-170.

ley, K. E., & Colrain, I. M. (2004). A review of the evidence for P2 being an independent onent process. Age, Sleep and Modality. CLARE: Elsevier Ireland Ltd.

0.1016/j.clinph.2003.11.021 S., Kim, S., & Kang, H. (2016). An analysis of the effects of smartphone push

cations on task performance with regard to smartphone overuse using ERP. outational Intelligence and Neuroscience, 2016, 5718580-8.

- D., Lee, Y., Lee, J., Nam, J. K., & Chung, Y. (2014). Development of Korean smartphone tion proneness scale for youth. *PloS One*, 9(5), e97920.

ina, D. L., & Ganis, G. (2018). Creativity and cognitive control: Behavioral and ERP ence that divergent thinking, but not real-life creative achievement, relates to better itive control. Neuropsychologia, 118(Pt A), 20.