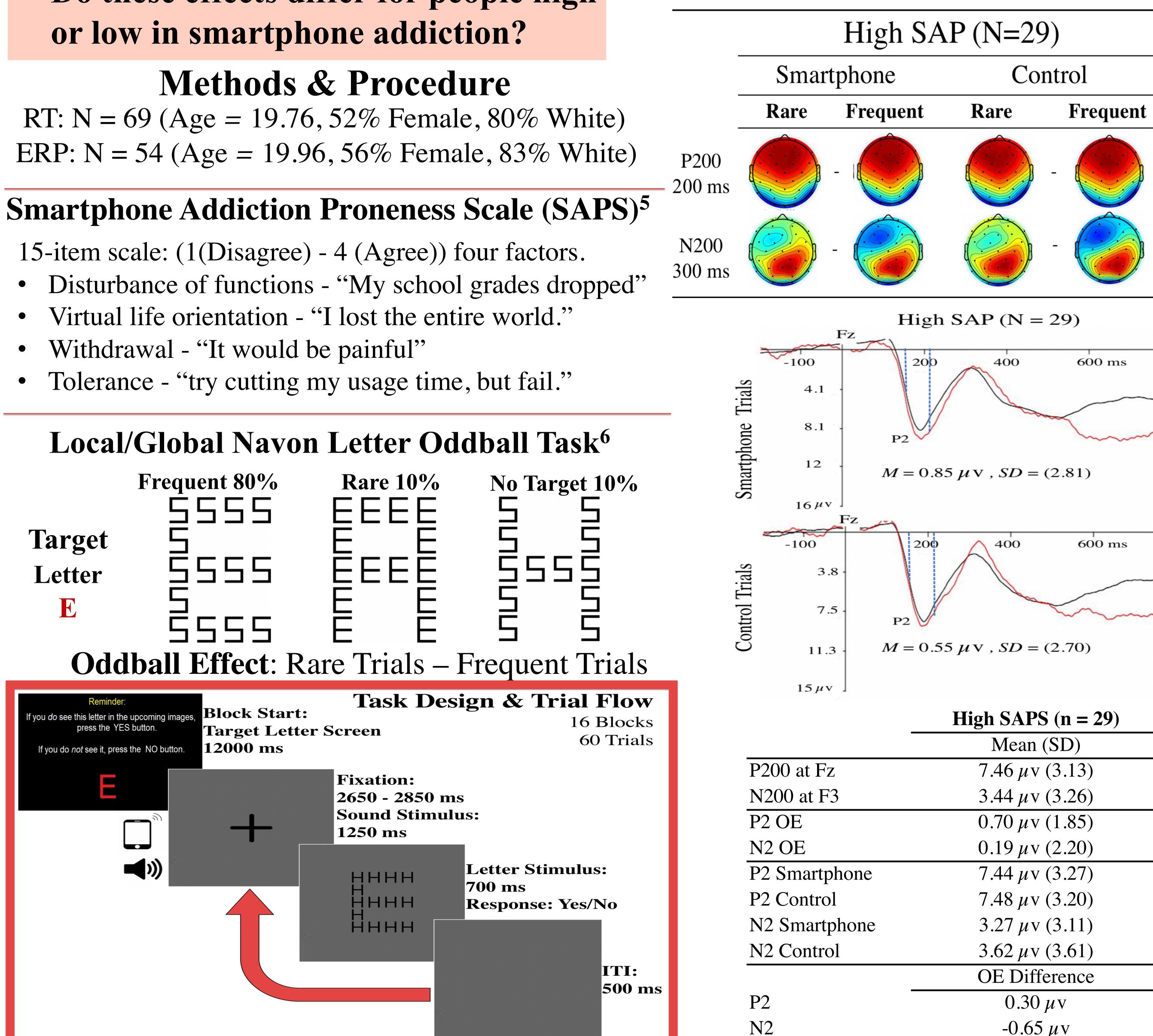
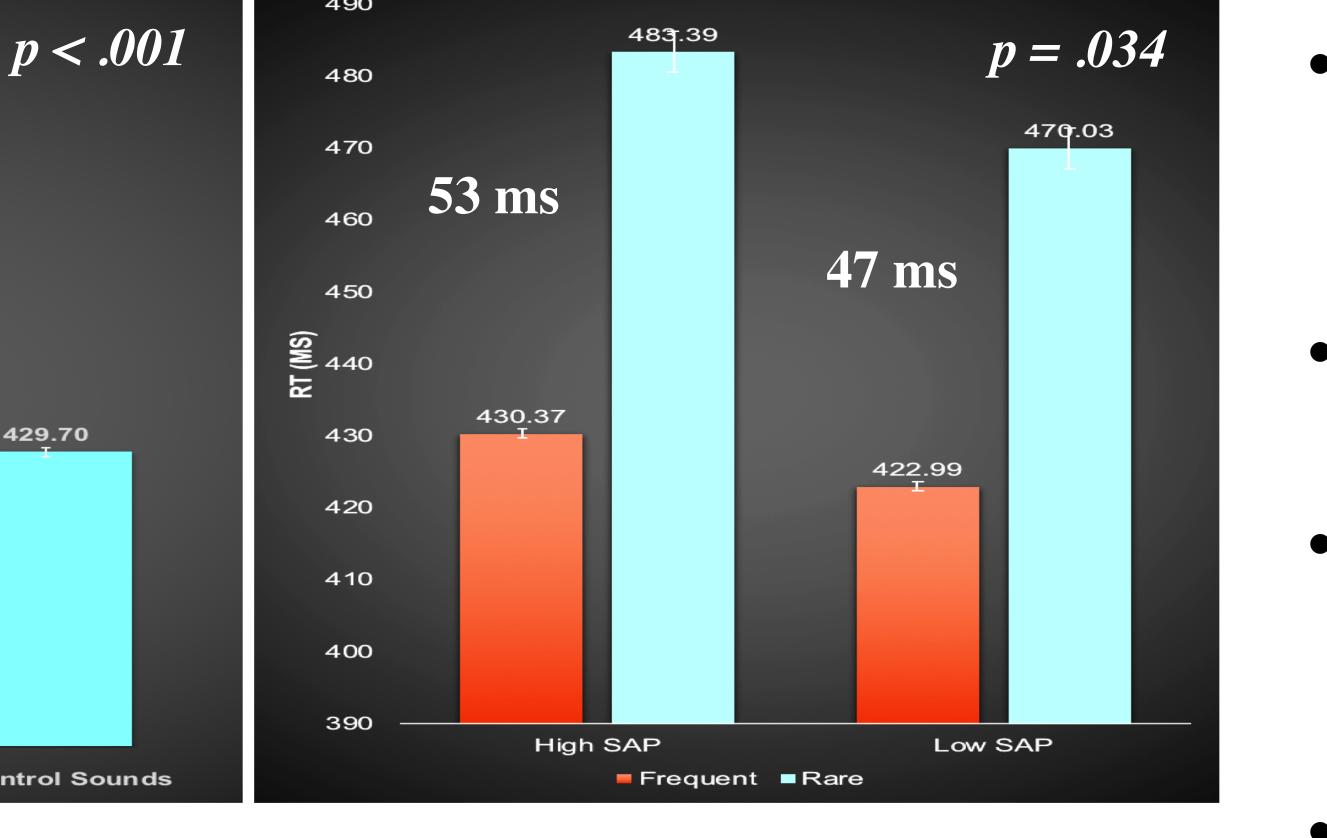
The Hidden Cost of a Smartphone: Behavioral and neural correlates of attention and cognitive control related to smartphone distraction. Joshua D. Upshaw¹, Carl E. Stevens, Jr.¹, Giogio Ganis², & Darya Zabelina¹


Department of Psychology, University of Arkansas¹, School of Psychology, University of Plymouth²

Smartphones and Cognitive Control?

- Heavy smartphone users show impaired attention, cognitive processing, frontal cortex excitability.¹
- Frontocentral N2 implicated in cognitive control.²
- Frontocentral P2 reflect early attention processes.³ • Smaller N2 after smartphone sounds.⁴


Goals of the Study

- Measure cognitive control using the Oddball Effect (RT & N2 ERPs)
- **Do smartphone notifications affect** cognitive control and attention?
- Do these effects differ for people high or low in smartphone addiction?

Reaction Time Results *p < .001 p* < .001 470 470 460 460 450 450 (**SW**) 440 (SW) 440 432.98 429.70 430 430 430 420 426.83 420 420 410 410 400 410 400 390 Rare Frequent

 $-0.65 \,\mu v$

ERP Results

Resu	lts			
	Ι	Low SAP	(N=25	5)
_	Smartphone		Control	
_	Rare	Frequent	Rare	Frequen
P200 200 ms	-			
N200 00 ms	-			-
	Fz A	v SAP (N =	= 25)	
-100 4.8 9.5	200	400	600 1	ns
14	$\begin{array}{c c} P2 \lor \\ .3 \end{array} \\ M = -0 \end{array}$.80 μv , SD =	= (2.62)	
19 µ	v J Fz			
	.1 0 P2	400	600 m	ns
1	M = 1	.00 μv , SD =	(2.62)	
20 µ				
	$\frac{\text{SAPS (n = 25)}}{\text{Aean (SD)}}$)	p	А
	1000000000000000000000000000000000000	2.72	.009	.74
	$00 \mu v (3.64)$	1.84	.104	.45
0.1	$1 \mu v (1.70)$	-1.22	.228	.33
-0.5	57 μv (1.80)	-1.37	.176	.37
	60 μv (4.10)	2.24	.029	.58
	53 µv (3.89)	2.72	.008	.86
	$^{\prime}1 \mu v (3.57)$	1.52	.135	.43
	$\frac{29 \mu v (3.85)}{1000000000000000000000000000000000000$	1.84	.098	.45
	E Difference		025	<i>/</i> 1
	-1.81 µv	2.13	.035	.41
	-1.45 µv	0.81	.419	.43

Conclusions

- An overall Oddball Effect was found. • Overall, people responded slower on trials with smartphone sounds vs control sounds.
- For RT, cognitive control was worse for people higher in SAP.
- P2 (early attention) overall was smaller for people higher in SAP regardless of the sound played.
- For P2, the oddball effect was smaller for people higher in SAP
 - N2 did not differ by SAP

Smartphone notifications delayed eaction time for everyone. People nore addicted to their devices had

worse cognitive control and attention when they heard smartphone notifications.

Limitations & Future Directions

- Non-jittered ITI for auditory ERPs Non-sound condition
- Objective measure of smartphone use Improve ecological validity of lab based EEG studies with virtual reality Introduce attention training paradigms such as mindfulness interventions

References

er, H. H., Sherman, L. E., & Chein, J. M. (2017). Smartphones and cognition: A review of rch exploring the links between mobile technology habits and cognitive tioning. Frontiers in Psychology, 8, 605.

ein, J. R., & Van Petten, C. (2008;2007;). Influence of cognitive control and mismatch on 2 component of the ERP: A review. *Psychophysiology*, 45(1), 152-170.

ley, K. E., & Colrain, I. M. (2004). A review of the evidence for P2 being an independent onent process. Age, Sleep and Modality. CLARE: Elsevier Ireland Ltd.

0.1016/j.clinph.2003.11.021 S., Kim, S., & Kang, H. (2016). An analysis of the effects of smartphone push cations on task performance with regard to smartphone overuse using ERP.

outational Intelligence and Neuroscience, 2016, 5718580-8.

D., Lee, Y., Lee, J., Nam, J. K., & Chung, Y. (2014). Development of Korean smartphone tion proneness scale for youth. *PloS One*, 9(5), e97920.

ina, D. L., & Ganis, G. (2018). Creativity and cognitive control: Behavioral and ERP ence that divergent thinking, but not real-life creative achievement, relates to better cognitive control. *Neuropsychologia*, 118(Pt A), 20.