bcbb BASQUE CENTER

AND LANGUAGE

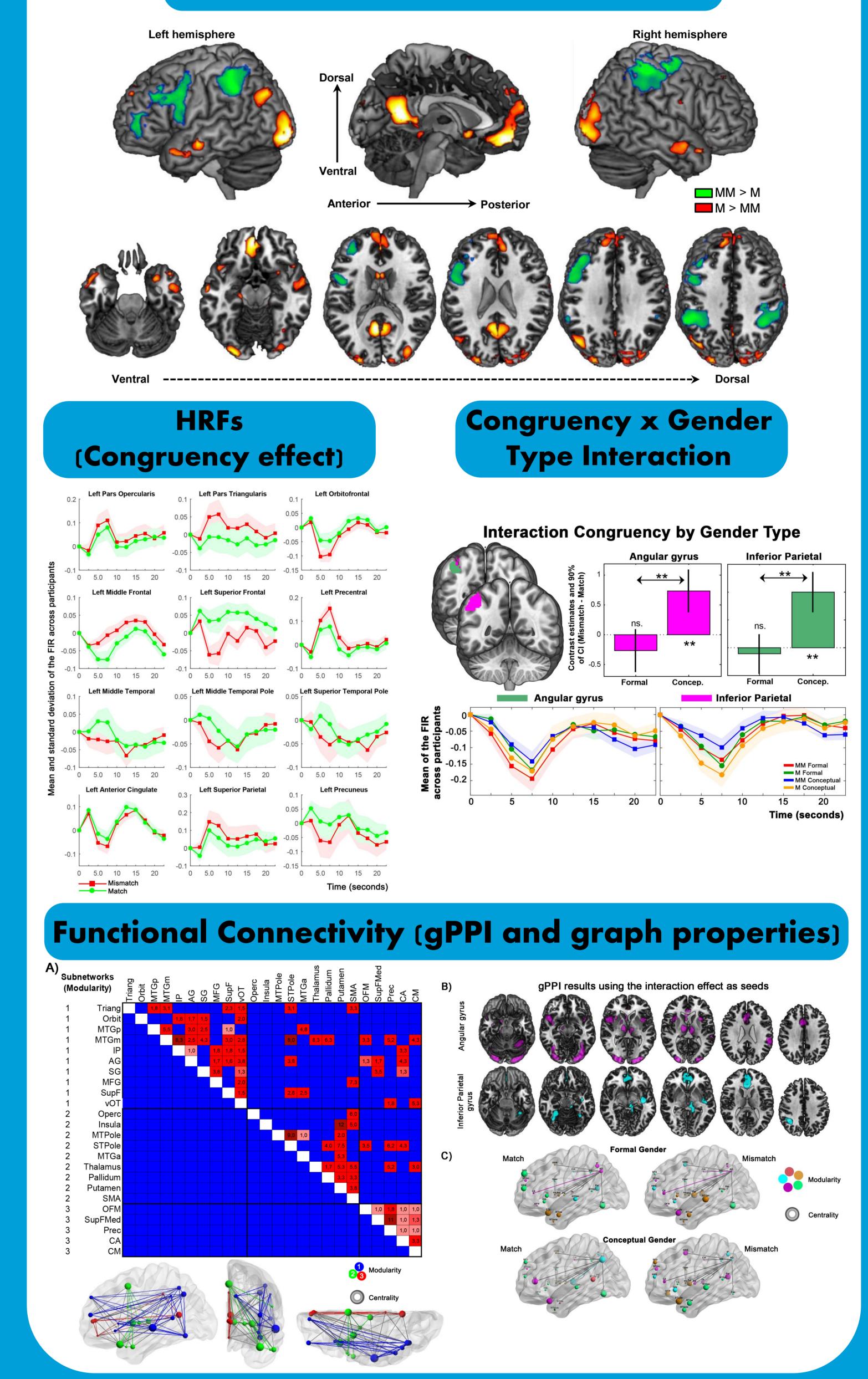
ON COGNITION, BRAIN

Linguistic input drives brain network configuration during language comprehension.

Quiñones I.¹, Molinaro N.^{1,2}, Caballero-Gaudes C.¹, Mancini S.¹, Hernández-Cabrera J. A., Barber H.³, Carreiras M.^{1,2,4}

¹ Basque Center on Cognition, Brain and Language (BCBL), Donostia, Spain; ² IKERBASQUE, Basque Foundation for Science, Bilbao, Spain; ³ University of La Laguna, Tenerife, Spain; ⁴ University of the Basque Country (UPV), Bilbao, Spain.

Background:


The distinction between syntactic and semantic processes and their specific roles in language comprehension has been the focus of many investigations in the last decades^{1,2}.

Syntax -----> Semantics

The vast majority of studies have explored formal and conceptual factors separately, assuming there is no interaction between them.

Main Results:

Main effect of Gender Congruency

Assessing the synchrony and interplay between distributed neural regions might be key to understanding how the language system operates.

Main Goals:

Whether and how the neural network(s) underlying the building of syntactic structures combines the formal and conceptual factors embedded in our linguistic code.

Can the language network re-orchestrate the function(s) of critical nodes to combine formal and conceptual cues when building syntactic structures?

Experimental Design: Using the Spanish gender agreement system we manipulated the gender congruency between nouns and others sentence constituents and the type of gender system a noun belongs to – i.e., Conceptual and Formal.

2 x 2 Factorial Design (Grammaticality judgment task)		
	Grammatical	Ungrammatical
Conceptual Gender	La abuela era sabia ([The grandmother] _{fem.sing.} was wise _{fem.sing.})	*La abuela era sabio ([The grandmother] _{fem.sing.} was wise _{masc.sing.})
Formal Gender	La película era larga ([The film] _{fem.sing.} was long _{fem.sing.})	*La película era largo ([The film] _{fem.sing.} was long _{masc.sing.})

Discussion (see in BioRxiv Quinones et al., 2020):

During comprehension of phrases and sentences multiple neural networks operate in a coordinated fashion. We demonstrated clear evidence for interactions between them.

Left-lateralized perisylvian circuit typically associated with language-specific functions^{1,2}

A bilaterally distributed domain-general conflict monitoring system

<u>The main contribution of this study was the parietal involvement we identified during access, retrieval and information.</u>

References

- 1. Friederici AD. 2011. The brain basis of language processing: from structure to function. Physiol Rev 91:1357-1392.
- 2. Hagoort P. 2013. MUC (Memory, Unification, Control) and beyond. Frontiers in psychology 4:416.

By Ileana Quiñones, staff scientist at the BCBL (i.quinones@bcbl.eu). CNS, 2020.