

Variability in inhibitory function reflects changes in motor performance after physical exercise

Courtney E. Walters Jr¹, Lisa C. Krishnamurthy^{1,2}, Javier Omar¹, Kevin Mammino¹, Bruce Crosson^{1,3}, Gabriell Champion¹, Venkatagiri Krishnamurthy^{1,3}, Kaundinya Gopinath⁴, Steve Wolf^{1,5}, Andrew J. Butler⁶, Joe R. Nocera^{1,3,5}, Keith M. McGregor^{1,3}

¹VA Rehabilitation R&D Center for Visual and Neurocognitive Rehabilitation, Atlanta VAMC; ²Georgia State University, Department of Physics and Astronomy; Emory University School of Medicine, Departments of ³Neurology, ⁴Radiology, ⁵Rehabilitation Medicine

Introduction

- Levels of physical fitness may explain variability in cortical recruitment and upper extremity motor control due to aging in older adults
- Aging leads to increased bilateral activity and decreased inhibition in the cortex
- It is unknown whether an exercise intervention would change cortical activity and improve motor performance in sedentary older adults
- Type of exercise may confer differential effects on imaging and behavioral outcomes; however, any physical activity intervention may change neural efficiency and promote behavioral function in deconditioned older adults
- This study compared and related change measures of physical fitness, motor performance, and cortical recruitment via functional magnetic resonance imaging (fMRI) and transcranial magnetic stimulation (TMS) between and across groups of previously sedentary older adults in either a 12-week aerobic Spin or non-aerobic Balance exercise intervention

Hypothesis

- Participants would show increased lateralization of cortical activity and measures of inhibition, which would be associated with improvements in motor dexterity and psychomotor speed as a result of the interventions
- Participants in the aerobic exercise intervention would show greater improvements in these measures as compared to a non-aerobic physical activity intervention

Methods 84 Screened 51 Did Not Meet Eligibility or Refused Participation 33 Consented Randomized **Pre & Post Assessments** Physical Fitness Spin Group: 17 Balance Group: 16 Extrapolated VO₂ Maximum via the YMCA Submaximal Fitness Test Motor Performance 2 Withdrew & 2 Removed 2 Withdrew & 3 Removed 9 Hole Pegboard Task due to MRI Artifacts due to MRI Artifacts Halstead Tapping Task · Purdue Pegboard Assembly Purdue Pegboard Column Spin Group: 12 Balance Group: 12 Cortical Recruitment Task-based fMRI utilizing a simple righthanded unimanual task acquired BOLD **Pre Session** profiles in sensorimotor cortex (M1S1) EPI (FoV=192x192x114mm², Matrix=96x96, 57 slices, slice thickness=2mm, TR=4000ms, Exercise TE=30ms, FA=87°, 142 sessions measurements, acquisition were thrice time=5:36 min) weekly over TMS with electromyography and a paired 12 weeks pulse procedures Resting motor threshold (RMT) Ipsilateral silent period Interhemispheric inhibition @ 40ms conditioning stimulation (IHI40) **Post Session**

Analysis

- fMRI data preprocessing; Area under curve (AUC) calculated for each voxel
- Volumetric analysis on AUC maps with conservative cluster threshold
- M1S1 BOLD profile analysis (MNI coordinates: +/-39 -22 57)
- Split-plot ANOVA using a REML design: sessions (within) and groups (between)
- Non-parametric Spearman's Rho (ρ) correlation computed for change scores (Post-Pre): physical fitness, motor performance, fMRI, and TMS
- Multiple regression analyses were performed on significant correlations

Results

Demographic Data Between Groups

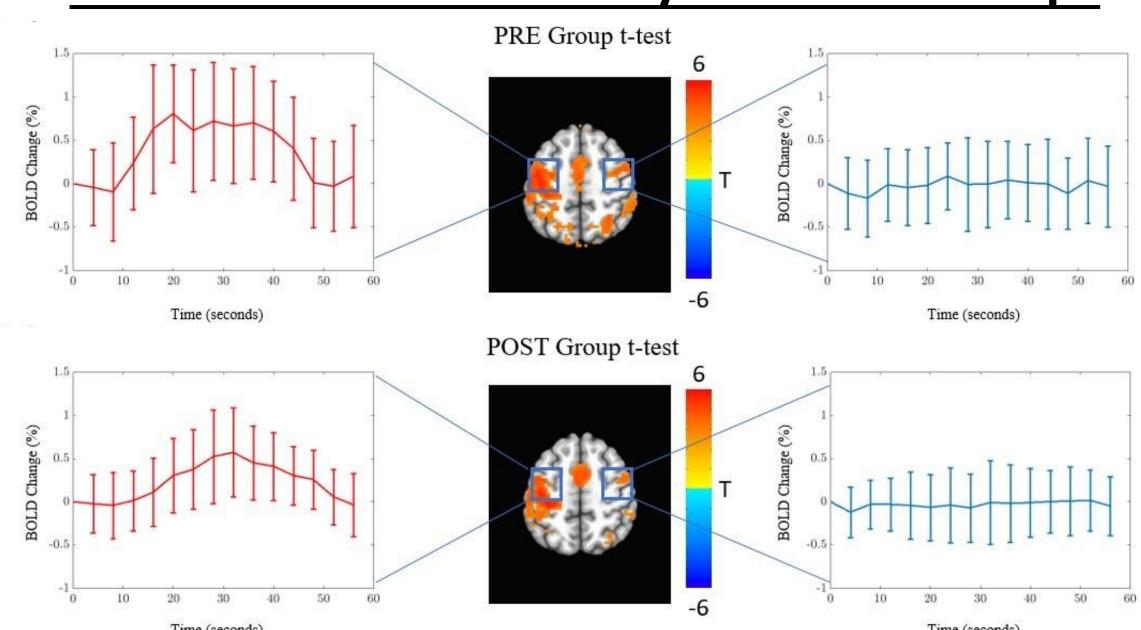
	Spin Group (n=12)	Balance Group (n=12)
Age	71.1 (6.53)	68.4 (6.07)
Body Mass Index	29.0 (5.25)	28.8 (6.52)
Edinburgh Handedness Inventory	0.98 (0.06)	0.98 (0.06)
Education	16.4 (2.71)	16 (2.95)

- Extrapolated VO₂ Maximums increased on average across groups after intervention although variability was present between groups
- RMT showed a significant decrease from Pre to Post across groups, p<0.01
- Split-plot ANOVA showed no significant differences in motor performance, fMRI, and TMS between groups at Pre and Post sessions
- Thus, the previously stated analyses were performed across groups

Results

Motor Performance Between and Across Groups

	Spin Group (n=12)		Balance Group (n=12)		All (n=24)	
	Pre	Post	Pre	Post	Pre	Post
9 Hole Pegboard Task (seconds)	25.1 (2.31)	22.8 (2.98)	23.6 (4.09)	24.8 (5.65)	24.4 (3.33)	23.8 (4.52)
Halstead Tapping Task (average presses)	43.0 (7.68)	44.2 (5.89)	44.2 (7.65)	42.8 (6.52)	43.6 (7.52)	43.5 (6.11)
Purdue Pegboard Assembly (points/assemblies)	6.75 (0.79)	7.25 (0.98)	6.72 (0.82)	6.75 (1.19)	6.73 (0.79)	7.00 (1.10)
Purdue Pegboard Column (points/pegs)	10.6 (1.16)	11.8 (1.96)	12 (1.76)	11.8 (2.30)	11.3 (1.63)	11.8 (2.09)
(1)					0.4 (-111 -	


• On average, all participants improved their scores for the 9 Hole Pegboard Task, Purdue Pegboard Assembly, and Column

Volumetric Analysis on AUC Maps Across Groups

PRE Volumetric Analysis **Activation Table** Peak X Peak Y Peak Z ROI (voxel) Right M1 +0.4+19.2Left M1 **POST Volumetric Analysis Activation Table** Peak Y Peak Z Peak X ROI (voxel) Right M1 4 85 +3.3-43.0 +56.8+25.6

• After the exercise intervention, participants across groups showed more leftlateralized changes for significant cortical activity by voxel size

M1S1 BOLD Profile Analysis Across Groups

 The extent of positive % change in the BOLD profiles for the left and right M1S1 decreased from Pre to Post across groups

Correlation and Regression Of Change Measures Across Groups

				0.6 R ² =0.18	15 _I R ² =0.22
Measure 1	Measure 2	ρ	p-value	0.3	£ 10
Purdue Pegboard Column	Extrapolated VO ₂ Maximum	0.47	0.02*	≡ -0.3	AUC (L-M1)
fMRI LM1 AUC	Resting Motor Threshold	0.45	0.02*	-0.6 -0.9 -1.2	7 -10 -15
Ipsilateral Silent Period	fMRI RM1 AUC	-0.45	0.02*	-10 0 10 Δ RMT	-1.5 -1 -0.5 0 0.5 1 Δ ΙΗΙ
fMRI LM1 AUC	Interhemispheric Inhibition	-0.42	0.04*	Begboard R2=0.16	15 R ² =0.15
9 Hole Pegboard Task	fMRI RM1 AUC	0.39	0.04*		A Halstead
Halstead Tapping Task	fMRI RM1 AUC	-0.37	0.05*	A Purdue Asse	-10 -15 -20
<i>lote.</i> * - denotes that there	was a significant (p<0.05) co	rrelation be	tween variables	-12 -6 0 6 12	-15 -10 -5 0 5 10
				Δ AUC (L-M1)	Δ AUC (L-M1)

Conclusions

- After an exercise intervention, previously sedentary older adults showed increases in physical fitness, which accounted for variance associated with leftlateralized changes in cortical recruitment and improved motor performance
- Increased cortical inhibition via the GABAergic system may drive these changes
- Any physical activity intervention may be effective in altering neurophysiology and motor behavior in severely deconditioned adults

Acknowledgements

The views expressed in this work do not necessarily reflect those of the United States Government or Department of Veterans Affairs. This work was supported by VA grants: IK2RX000956, I01RX002619, IK2RX000744, and I50RX002358.