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This study demonstrated that fMRI BOLD signal captured during the cued-recall task is
sufficiently Markovian to permit approximately optimal control values, fit via Q-learning, to
measure the performance of on-policy actions in comparison to random actions across a range of
action-value function parameterizations. Moreover, the most likely parameterization indicated
that subjects employed greedy action selection. One limitation of this work is that the reward
function did not include a penalty for action (cognitive load)8, which could alter our findings.
Ongoing work in our lab incorporates action penalties into this analysis.Methodological and Conceptual Overview. (A) Ninety IAPS stimuli presented to (n=40, 20 female) subjects, aged 18-

65, for 2 s interleaved with random ITI [2–6 s]. (B) Concurrent fMRI measurement of the BOLD response and
psychophysiology (skin conductance response, SCR, and pulse plethysmography, PPG). (C) Neural activation and SCR
patterns (i.e., states) were extracted via the beta-series method1; heartrate (HR) deceleration was computed relative to
the pre-stimulus HR. (D) Linear support vector machines (SVM) were trained to predict affect labels from states.

Cued-Recall Experiment Design & Conceptual Model. (A) Subjects were presented with (n=30) cued-recall
(CR) formats concurrently with fMRI. (B) We hypothesize that the brain will execute control during CR such
that the control law, L, manipulates the state, s, of the plant, P, via action, u, to achieve goal, s* according to
Q-Learning. Independent measures of physiology will verify affect induction during cued-recall.

Q-Learning
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Results

Results. (A) On-policy actions significantly
outperformed expected value of random actions
across all discount factors. (B) On-policy actions
were most similar (measured as error between
the on-policy and optimal action for a given
state) to the optimal actions under steeply
discounted (i.e. greedy) value estimates. (C)
Significant affect control was observed during
cued-recall. Affect induction was independently
observed during cued-recall via physiology: skin
conductance response (SCR) and facial
electromyography (EMG).
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Mean intra-subject
classification accuracy

(null: 50%).

Valence: 78%
Arousal: 77%

Percent of significant
intra-subject models

(n=40)

Valence: 88%
Arousal: 84%

Prediction Effect Sizes

We explored whether value-based (specifically action-value or Q-value) cognitive control obtains empirical support
from functional magnetic resonance imaging (fMRI) data recorded for (n=40) healthy subjects performing an affect
control task. Task trials (n=30 per subject) were comprised of International Affective Picture Set (IAPS) image stimuli (2
s) succeeded by control steps (8 s) in which subjects volitionally re-experienced the perceived affect of the stimuli while
observing a fixation symbol. Affect (valence) measurements were predicted by previously reported fMRI-derived
machine learning models fit separately to each subject using unique IAPS stimuli. States were defined as mean neural
activations within a set of five BrainMap-derived emotion/interoception-involved independent components. Actions
were defined as predicted valence differences between successive fMRI volumes discretized into (n=5) bins. Reward
was defined as absolute difference between the control valence and stimulus valence in the succeeding volume. For
each subject, for each of a set of discount factors (gamma) sampled on the range of [0,1] at 0.1 increments, the Q-
function was modeled via random forest implementation of the fitted Q-iteration algorithm. For each discount factor
and each subject, we computed: 1) on-policy out-of-sample group median Q-values; 2) random-policy out-of-sample
group median Q-values; and, 3) error between on-policy actions and out-of-sample group median optimal actions. We
found that on-policy Q-values were significantly greater than random policy Q-values across all discount factors
supporting value-based affect control. We also found that error between on-policy actions and optimal actions was
lowest for small [0.0-0.1] discount factors supporting a greedy affect control strategy.

Policy
ut = π*(st) = argmaxuQ*(st,u)

Q-function
Q(st,ut) = r(st+1) + γ·argmaxuQ(st+1,u)

Action Approximation
ut = st+1 - st

Reward Function
r(st+1) = |st+1-s*|

Q-Learning Methods. Subject brain states were
dimensionally reduced to 5 emotion/interoception
ICA dimensions6. Actions, u, were approximated and
then binned (group-wise) into 5 discrete bins: {[∞, -
2σ], (-2σ,-1σ],(-1σ,1σ),[1σ,2σ),[2σ, ∞]}. We used a
random forest implementation of fitted Q-iteration7

to estimation the Q-function. We fit Q-functions for
discount factors, γ ϵ [0,1], at intervals of 0.1 for each
subject.

Q-Learning Validation. Q-values at each state-action
were estimated by ensemble estimation (out-of-
subject). Additionally, the optimal action and
expected value of random action were estimated for
each state for each subject.

Toy Example. γ=0.5, r = -1 + <terminal>

Results. (A) Prediction accuracy2. (B) Induction and convergent validity3. (C) Anatomical validity4-5.
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