

Parafoveal Semantic Integration Eliminates the N400 of Foveal Semantic Violation NeuroCognition Laboratory Chuchu Li¹, Katherine J. Midgley², Phillip J. Holcomb² ¹University of California, San Diego² San Diego State University

Background

ERP measures of Sentence Comprehension

- Semantic anomalies: N400 (Kutas & Hillyard, 1980) A negative-going deflection in ERPs that peaks around 400 milliseconds after stimulus presentation
- Syntactic anomalies: P600 (Osterhout & Holcomb, 1992) A positive-going deflection in ERPs that peaks around 600 milliseconds after stimulus presentation

Target Words in Parafovea

Results

N400 to an unexpected target word in the parafovea, and the effect was mitigated when target words were foveated (Stites, Payne, & Federmeier, 2017)

Research Question:

1) How do readers process words that carry more semantic vs. syntactic information?

Content Words	Function Words
Rich Semantic	Little Substantive Meaning
Information	Grammatical Relationship
nouns, lexical verbs, adjectives, some adverbs	auxiliary verbs, pronouns, articles, conjunction, prepositions, etc.
cat, run, red, quickly	can, he, the, and, in, little, that

2) What about the time course (parafovea vs. fovea)?

Target in parafovea Target in fovea

— Control (his/boss)

— Violation (on/water)

N400 for both content and function word replacement Interaction with laterality

- Content word: whole scalp; slightly toward the right
- Function word: no N400 on the right

No sign of P600 for either

Target Words in Fovea

Content Words

Methods

Participants

24 right-handed English monolinguals

Materials

120 critical sentences in <u>3 conditions</u> + 40 filler sentences

Control

The employee needs to prepare the document for his boss this morning.

Content word replaced

The employee needs to prepare the document for his water this morning.

Function word replaced

The employee needs to prepare the document for on boss this morning.

No sign of N400

Positivity for both content and function word replacement

- Content word: a broadly distributed positivity after parafoveal N400; may be a long-lasting cost of semantic anomaly
- Function word: Later onset of P600

Procedure

A visual hemi-field flanker RSVP paradigm

At the end of each sentence, judged whether it made sense or not (yes vs. no). Acc > 85%

Contact: chl441@ucsd.edu

Summary

Unexpected content and function words in parafovea both lead to N400, suggesting early semantic processing (before eye fixation)

The right hemisphere is less sensitive to unexpected function words, probably a sign of less reliance on sentence level semantic integration (also see Coulson et al., 2005; Wlotko & Federmeier, 2013)

No N400 but long-lasting positivity for foveated content targets; probably reflecting the effort to use later context to fix the big semantic anomaly problem

P600 for function words until following words are visible; suggesting the importance of complete context for syntactic processing