Using Optical Flow to Quantify Movement Differences in Response to Emotional Stimuli Among People with Schizophrenia and Controls

Lisa Lin, BA^{1,2,3}; Michelle Matvey, BA^{1,2}; Ellen Bradley, MD^{1,2}; Chenwei Wu³, Jonathan Lai³, Ian Harshman, BS, David Dodell-Feder, PhD³, Josh Woolley, MD/PhD^{1,2}

Introduction

- Nonverbal behavior during social interactions is very important to human communication
- People with schizophrenia (SZ) show deficits in nonverbal expressivity¹
- Use of clinician ratings to measure symptoms associated with schizophrenia has been common in the field²
- Recent growth of objective, automated techniques to study nonverbal behavior (e.g. Motion Energy Analysis³, Optical Flow Estimation⁴, etc.)
- Optical Flow Estimation: frame-differencing algorithm that calculates vector fields of estimates of the spatiotemporal changes resulting from motion changes over time/successive frames
- Aims:
 - Conduct an exploratory study using optical flow to quantify differences in the average amount of movement in people with SZ vs. controls as they watch evocative video clips
 - For the SZ group, evaluate the relationship between movement during positive and negatively valenced stimuli and positive and negative symptom severity and CPZ scores

Methods

- 1. Men with SZ and HCs viewed brief and evocative video clips while being video-recorded (**Positive**, **Negative**, Neutral)
- 2. Following each video, the participant described for 30s what happens in the video
- 3. Video-recordings of participants were timestamped according to when each video stimuli started/ended and when the participant started/ended describing each video
- 4. Videos were run through optical flow
- 5. Movement amplitude values for watching and describing the videos were together averaged across video stimuli within each stimulus valence
- 6. Correlations were run between average movement amplitude values and positive (Positive and Negative Syndrome Scale⁵) and negative symptom (Clinical Assessment Interview for Negative Symptoms⁶) measures
- 7. Paired sample & independent sample t-tests and a 2 x 3 Mixed Model ANOVA were run to look at group and valence-type differences in average amount of movement

Evocative Video Task

in standard set-up

0.03 0.025 0.02 **0**.015 0.01

Series1

^{University} of California, San Francisco, Department of Psychiatry, San Francisco, CA, US ²San Francisco Veterans Affairs Medical Center, San Francisco, CA, US ³University of Rochester, Department of Psychology, Rochester, NY, US

Trend Approached Significance for Group x Valence Type Interaction

Main effect of group: F(1, 73) = 1.18, p = 0.28, $\eta_p^2 = 0.02$ Interaction: $F(2, 146) = 3.24, p = 0.06, \eta_p^2 = 0.04$

Average Movement not Correlated With Symptom **Severity or CPZ Scores**

	Positive Valence	Negative Valence	Neutral Valence
CAINS MAP	<i>r</i> = -0.01	<i>r</i> = -0.02	<i>r</i> = 0.11
CAINS EXP	<i>r</i> = -0.16	<i>r</i> = -0.13	<i>r</i> = -0.02
CAINS GLOBAL	<i>r</i> = -0.08	<i>r</i> = -0.07	<i>r</i> = 0.07
PANSS_Positive	<i>r</i> = -0.05	<i>r</i> = 0.08	<i>r</i> = 0.02
CPZ Scores	<i>r</i> = 0.13	<i>r</i> = 0.15	<i>r</i> = 0.16

All *p*s > 0.05

Discussion

Limitations:

- Small and unequal sample size
- Single type of positive valenced video used
- Neutral videos may not be neutrally valenced
- Difficult to standardize video valence/emotionality
- Difficult to determine how to normalize optical flow energy
- Oxytocin administration to SZ group The Big Picture:
- People with SZ did not differ in their average amount of movement during the Evocative Video Task compared to controls
- Within groups, there were significant differences in the amount of movement between videos of different valences
- Optical flow estimation may be a powerful tool to study movement abnormalities in schizophrenia

Literature Cited

1.) Brune et al. (2008), *J. Nerv. Men. Dis.* 282-288. 2.) Lavelle, Healhy & McCabe (2014), J. Nerv. Ment. Dis. 47-54., 3.) Ramseyer & Tschacher (2011), J Consult Clin Psychol, 284-95, 4.) Scherer et al. (2012) ERLA conf. on Language Resources and *Evaluation* 1114-1120. 5.) Kay et al. (1987), *Schizophrenia Bulletin*, 261-276. 6.) Kring et al. (2013), Am J Psychiatry, 165-172

**Corresponding author: lisa.lin@rochester.edu

Main effect of valence: F(2, 146) = 11.31, p < 0.001, $\eta_p^2 = 0.13$

HC

Valence —Positive -Negative -Neutral