Planning production: Morphological, semantic and syntactic representations

Esti Blanco-Elorrieta^{1,3}, Miriam Hauptman^{1,3}, and Liina Pylkkänen^{1,2,3} New York University Psychology^{1,} New York University Linguistics², NYU Abu Dhabi³

Introduction

- Lexical, morphological, and phonological processing are viewed as separate processing levels in most models, yet their spatial and/or temporal dissociation is under-characterized.
- Invasive intracranial electrophysiology recordings have revealed selectivity for morphological processing in time and space during production.^{1,2}
- Given its spatial and temporal sensitivity and non-invasive nature, MEG is an ideal method for studying the stages of linguistic processing leading up to production in healthy brains.

Research questions

a) Do we observe an effect of abstract inflection, regardless of differences in phonology?

- b) Do we observe differences in activity based on syntactic category, independent of semantic properties and inflectional status?
- c) How are representations of inflectional, semantic, and syntactic features encoded in the brain over time?

Task: Phrase Completion

Task instruction: Complete the phrase with the appropriate form of the noun / verb

Analysis

•Acquisition recording band 0-200Hz, sampling rate of 1000 Hz

300 - 500 ms

Significant correlation with model matrix (extending for at least 25 consecutive ms) throughout the left hemisphere

Spatiotemporal, Non-Parametric Permutation Tests •Non-parametric cluster permutation ANOVAs performed from 100 to 500 ms across a left hemisphere mask, p < 0.05

•Epochs from 0 (cue offset) to 500 ms (average production)

Representational Similarity Analysis (RSA)

- •Searchlight analysis through time (50 ms sliding windows) and space (10 mm of cortex around each source)
- •Whole left hemisphere (0 500 ms), p < 0.05, FDR correction

Results

1. We find evidence of abstract grammatical inflection during production in frontal and frontotemporal regions.

- system.

References

@BlancoElorrieta @HauptmanMiriam

b) Difference in activity based on syntactic category^{3,4,5} regardless of other linguistic features (300 - 500 ms window)

* no significant interactions with semantic features or inflectional status

c) Representations of inflectional, semantic, and syntactic features encoded in the left hemisphere over time

Conclusions

2. This effect is consistent across syntactic category, person/number and lexico-semantic properties, suggesting a unified inflectional

3. Detailed neural representations of inflectional, semantic, and syntactic properties can be probed using multivariate analyses at different time-scales over distinct anatomical regions.

¹ Sahin et al., 2009; ² Lee et al., 2018; ³ Shapiro, Moo, & Caramazza, 2006; ⁴ Bedny et al., 2008; ⁵ Bedny & Thompson-Schill, 2006