

1 Introduction

- Dual process models of recognition memory distinguish between familiarity, a feeling of "oldness" and recollection, the remembering of contextual details.¹
- Previous research established a clear link between semantic processing and familiarity-based remembering, but was equivocal on whether familiarity benefits from facilitation of or increased demands on semantic processing.^{2,3}
- Event-related potential (ERP) studies identified the P300 at encoding as a reliable predictor of subsequent (recollection-based) recognition (subsequent memory effect, SME),^{4,5} but the results are mixed for the N400, a component associated with semantic processing, as a predictor of subsequent familiaritybased recognition ^{4,5,6}.

Research Question:

Do increases or decreases in the N400 predict familiarity-based recognition?

2 Methods

Participants

32 healthy, right-handed students (24 female, age: 18-30 yrs., median: 21 yrs.)

Material

240 word sets, each with 3 primes, a target, and a distractor, were divided into three conditions:

- Coherence: The primes were semantically related with each other and the target (facilitation of semantic processing).
- **Deviance**: Primes were only (increased demands on semantic processing).
- Incoherence: Primes were unrelated with each other target (control the and condition).

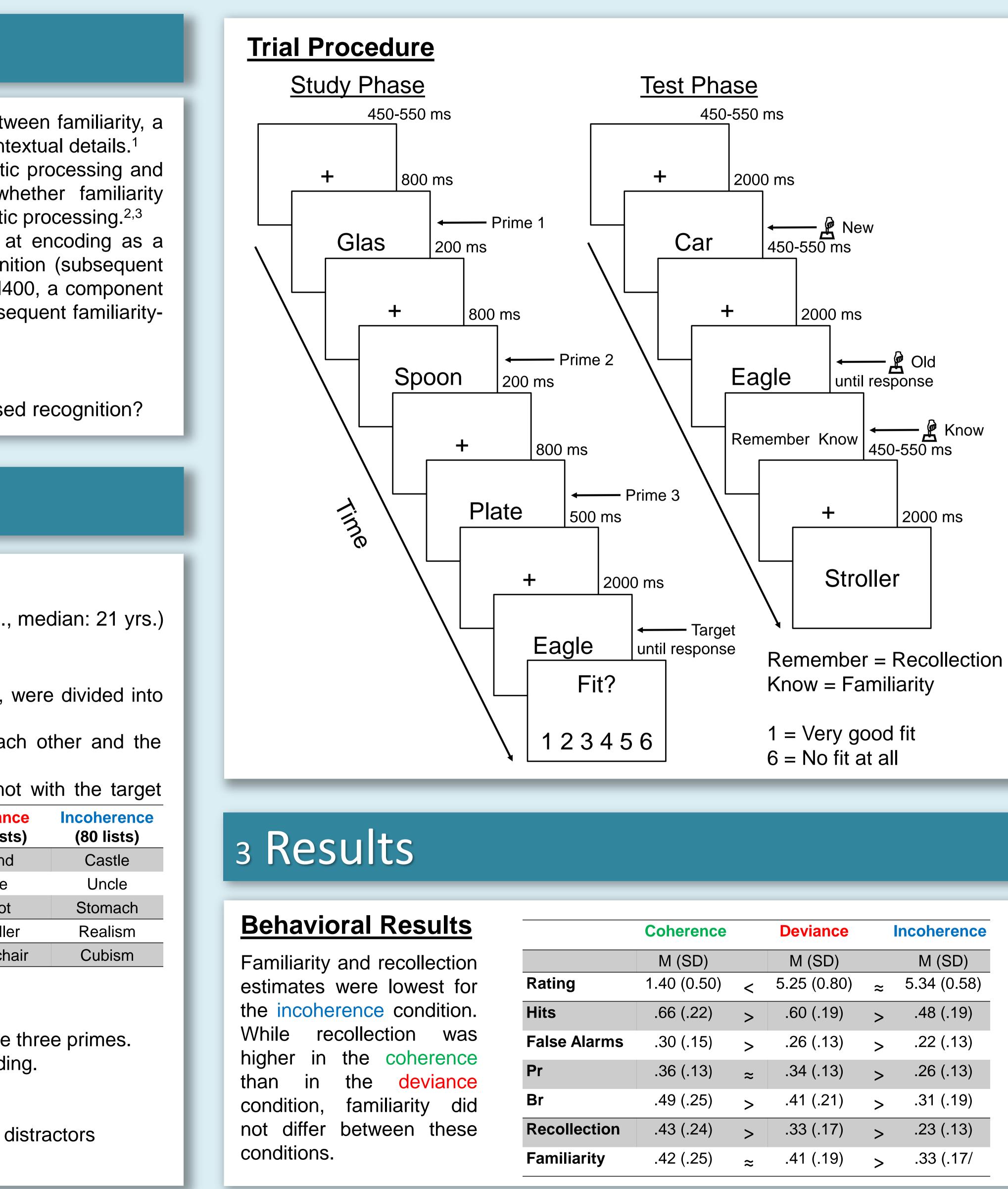
related wit	h each othe	r but n
	Coherence (80 sets)	<mark>Deviar</mark> (80 lis
Prime 1	Glas	Han
Prime 2	Spoon	Тое
Prime 3	Plate	Foo
Target	Fork	Stroll
Distractor	Knife	Highch

Experiment Procedure

Study Phase:

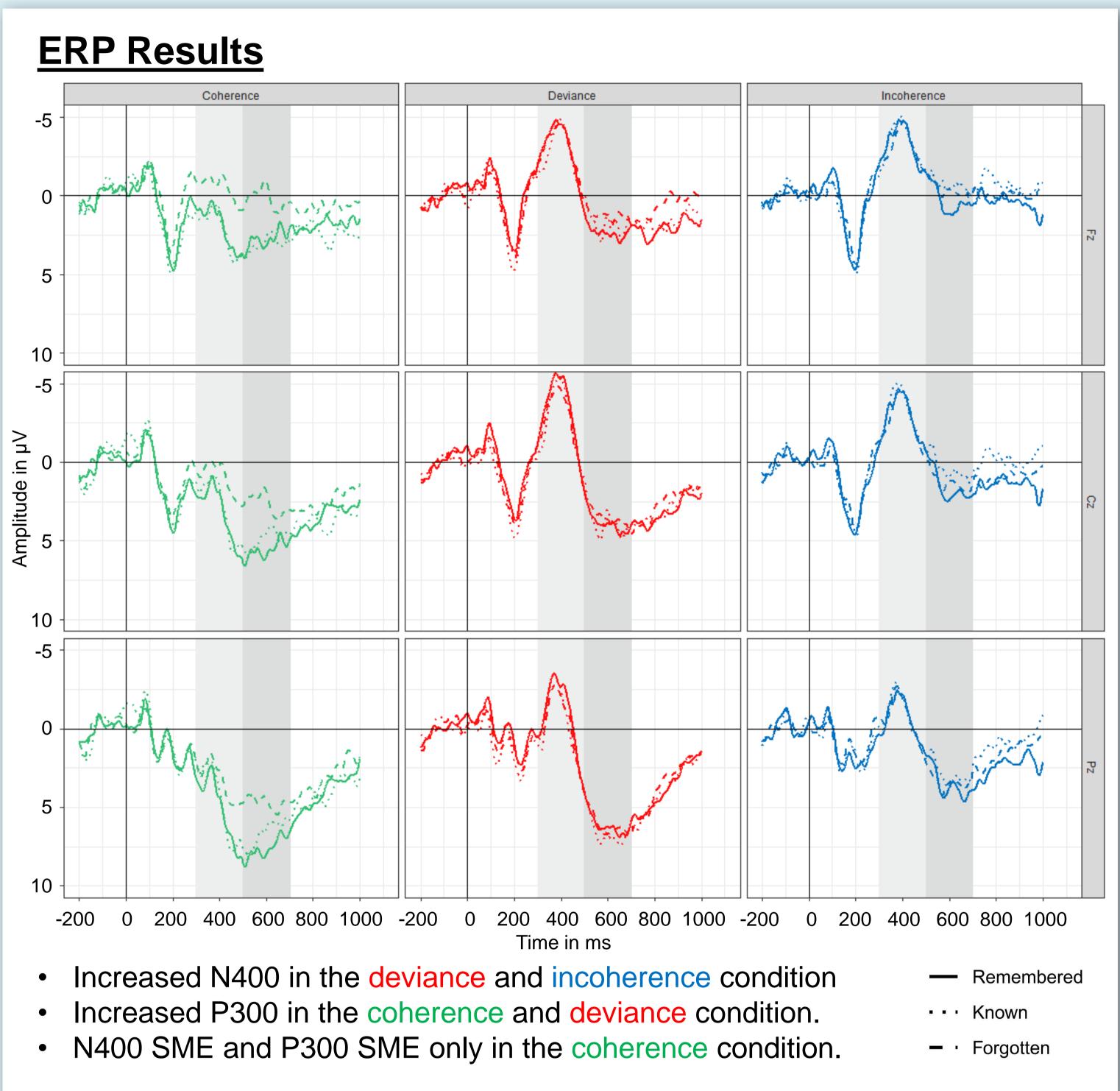
- Participants rated the semantic fit between the target and the three primes.
- This task ensured semantic processing and incidental encoding.

<u>Test Phase:</u>


- Old/New recognition judgment for old targets and unstudied distractors
- Remember/Know judgment⁷ conditional on old response

References

- ¹ Yonelinas (2002). Journal of Memory and Language, 46, 441-517
- ² Meyer et al. (2007). NeuroReport, 18, 1009-1013.
- ³ Opitz & Cornell (2006). Journal of Cognitive Neuroscience, 18(9), 1595-1605.
- ⁴ Fabiani (2006). In Hunt & Worthen (Eds.) Distinctiveness and memory, p. 339-360.
- ⁵ Weigl et al. (April, 2016). 23rd Annual Meeting of the CNS, New York, USA.


Word problems: An event-related potential study on remembering semantically related and unrelated words

Michael Weigl, Paula Mohr, Benjamin Palej, Julia Rafinski, Lukas Schmitt, Regine Bader Saarland University, Saarbrücken, Germany, Correspondence: m.weigl@mx.uni-saarland.de

⁶ Mangels et al. (2001). Cognitive Brain Research, 11, 77-95. ⁷ Tulving (1985). NeuroReport, 18, 1009-1013. ⁸ Höltje et al. (2019). Neuropsychologia, 131, 285-293. ⁹ Friedman & Trott (2000). Neuropsychologia, 38, 542-557.

Cohoronoo		Devience		
Coherence		Deviance		Incoherence
M (SD)		M (SD)		M (SD)
1.40 (0.50)	<	5.25 (0.80)	~	5.34 (0.58)
.66 (.22)	>	.60 (.19)	>	.48 (.19)
.30 (.15)	>	.26 (.13)	>	.22 (.13)
.36 (.13)	~	.34 (.13)	>	.26 (.13)
.49 (.25)	>	.41 (.21)	>	.31 (.19)
.43 (.24)	>	.33 (.17)	>	.23 (.13)
.42 (.25)	≈	.41 (.19)	>	.33 (.17/

4 Discussion

- Condition without semantic relationships revealed that memory benefits from both semantic processing styles (but to a different degree). Memory studies on congruency and expectancy violations should include control condition without semantic relationships.
- Facilitated semantic processing at encoding led to high recollection- and familiarity-based recognition and SMEs in the N400 and P300 time window. \rightarrow This replicates prior studies on the effect of congruency^{4,8}. \rightarrow In contrast to prior studies^{5,9}, the SMEs did not differentiate between familiarity and recollection.
- Increased demands on semantic processing led to high familiarity, but only moderate recollection and no SMEs. \rightarrow Encoding profited less from deviance processing in this case^{2,4,5}.

