

# High-level neural categorization of human voices as revealed by fast periodic auditory stimulation



Francesca M. Barbero<sup>1</sup>, Roberta P. Calce<sup>1</sup>, Bruno Rossion<sup>1,2,3</sup>, Olivier Collignon<sup>1,4</sup>

1. Institute of research in Psychology (IPSY) & Institute of Neuroscience (IoNS), University of Louvain (UCL), Louvain-la-Neuve, Belgium 2. Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France 3. Université de Lorraine, CHRU-Nancy, Service de Neurologie, F-54000, France 2. Centre for Mind/Brain Sciences, University of Trento, Trento, Italy

### Introduction

Several studies have corroborated the existence of voice preferring regions in the human brain<sup>1,2</sup>. Whether this preference is driven by low level acoustic properties peculiar of voices, or whether it reflects a higher-level categorical response is still under debate.

We combined EEG recording with a Fast Periodic Auditory Stimulation (FPAS) oddball paradigm to investigate whether categorically responses

## EEG - Fast auditory periodic stimulation

Sixteen participants (19-26 years) listened to three types of periodic sequences:

standard

scrambled

-

voice selectivity

control for frequency content

harmonic

control for harmonicity, pitch

Voices were presented each third sound in 60 s-long sequences

- 4 repetition per sequence type

to voices partially abstracts from some low-level acoustic features.

Orthogonal non-periodic task



Vocal sounds (55 stimuli):

- Speech and non-speech vocalizations
- Speakers of different age, sex, emotional state Non-vocal sounds (137 stimuli):
  - Naturalistic sounds (6) Instruments (32)
  - Objects (89)
- Auditory scenes (10)

### 250 ms-long sounds



- Stimuli as in standard sequence, frequency scrambled<sup>4</sup>:
  - Frequency content and temporal structure close to that of the original stimuli
  - Altered harmonicity
  - Sounds are not recognisable anymore

### Harmonic sequence harmonicity centre pitch to noise ratio logscalej 25-Z40<sup>J</sup> 20 1000 S 230 **UN** 15-[Hz uedneu 220 ency 500 $10^{-10}$ voice non-voice voice non-voice voice non-voice

Vocal sounds (singing voices, 16 stimuli) and non-vocal sounds (instruments, 16 stimuli)<sup>5,6</sup> matched for:

- Harmonicity-to-noise ratio (HNR)
- Pitch, spectral centre of gravity
- 128 ms-long sounds



### Behavioral experiment

Sixteen participants (18-26) listened to short sequences (5 sounds) of the three types

- Participants had to indicate whether each sequence contained a voice or not (50% occurrences)





 $\succ$  Our results show robust voice selective brain responses over superior temporal electrodes that cannot be explained by frequency content nor harmonicity typical of voice samples alone.

 $\succ$  FPAS paradigm allowed us to characterize voice selective responses with a

high signal to noise ratio in a very short acquisition time (4 minutes only).

[1] Belin et al. 2000, Nature; [2] Belin et al. 2002, Cogn Brain Res; [3] Liu-Shuang et al. 2014, Neuropsychologia; [4] Dormal et al. 2018, J. Cogn. Neurosci.; [5] Agus et al. 2017, Sci. Rep.; [6] Goto et al. 2003, Proc. Int. Conf. Music Inf. Retr.

francesca.barbero@uclouvain.be