RSNA 2016

Introduction:

Quality Assurance for Performing an Optimal fMRI Study: Tips and Tricks from Our Clinical Experience

Suvarna Badhe MBBS, Alexander W. Korutz MD, Benjamin P. Liu MD

Section of Neuroradiology, Department of Radiology, Northwestern University, Feinberg school of Medicine, Chicago IL.

Paradigms:

- Vary from basic motor tasks to complex language tasks, the latter are performed to keep patients engaged and challenged.
- We also perform a cerebrovascular reactivity (CVR) paradigm to determine what brain regions can generate BOLD signal.
- Paradigms use block design with 20s active and 20s control blocks.
 - Reading comprehension paradigm Read sentences and decide if true or false (active). Locate a previously seen symbol among a group of symbols (control). (Fig 2)
 - \rightarrow CVR paradigm Hold breath (active) and breath normally (control).

Image Acquisition:

- Patient comfort is essential. Even a claustrophobic patient can perform well on an fMRI with the right approach.
 - → Instruct the patient to keep their eyes closed during scan set up and to open them only when ready to run paradigm.
- Use appropriate MRI safe glasses if the patient has a prescription.
- Remind patients to keep head stationary throughout study.
 This limits need for manual correction during post-processing.
- Functional tasks should be run in decreasing order of importance to avoid mental fatigue while performing most important tasks.
 → For a lesion near the hand knob, consider scan order in Figure 3.
- Examine real-time BOLD activation during scan to gauge performance. → Stop and repeat tasks if needed to save time and increase efficiency.
- Observe patients during scan (especially motor tasks) to ensure task is being performed with minimal whole body motion.
 - \rightarrow Helps understand reasons for poor observed activation.
- Adjust FOV to cover region of interest and surrounding eloquent areas.

NR014-EB-X

Image Post-processing and Quality Assurance:

- Manually confirm accurate co-registration for anatomic sequences, fMRI tasks and DTI.
- Use smoothing function for noisy data and censor large motion spikes.
- Review the time-series for each task to ensure that the BOLD response (black) reasonably approximates the ideal waveform (red). (Fig 4.1)
- Limited motion in all 6 planes (i.e. < 5mm). (Fig 4.2)
- Check the motion parameters to make sure that the motion graph does not correlate with the ideal waveform, and therefore exclude motion as artifactual activation. (Fig 4.3)
- When sending anatomic images to PACS with multiple tasks overlaid, use different colors for each task.
- Alternately, can use activation blobs/outlines which are transparent centrally (i.e. loops/outlines) instead of solidly filled with color to see the borders of each task precisely.
- When in doubt regarding the validity of an activation cluster, usually
 activation that survives a high threshold is more accurate than one
 that is only present at a lower threshold.

Fig 7 March 24 March 24 Professional Control of Control Cont

In this fMRI exam, the patient had good language activation during the reading comprehension paradigm even though a low score of 42.1% was reported.

This can result from obtaining a very good score on the active task and a very poor score on the control task.

Image Interpretation Pearls:

- BOLD imaging uses blood flow to the cortex as a surrogate marker for neuronal activity, rather than direct measurement.
- CVR measurement demonstrates cortex which is capable of generating BOLD signal, regardless of the presence of functioning neurons. (Fig 5)
 - \rightarrow Absent blood flow augmentation in response to hypercapnia
 - → Negative CVR signal can indicate neurovascular uncoupling.
 → Negative CVR signal can indicate steal physiology.
- Ignore obviously false BOLD activation.
- ⇒ Skull base activity on tongue motor task may be seen due to translated osseous motion during tongue movement.
- Consider the possibility of neural plasticity when an activation cluster appears genuine but is in an unexpected location. (Fig 6)
- Realize that activation may localize to the artery or draining vein supplying the region of interest but upstream or downstream to the cortex.
- Hemispheric language dominance is generally very reliable in fMRI.
- Temporal lobe language activation areas are usually more true to intraoperative cortical stimulation findings than frontal and parietal lobe language activations.
- For tasks that document patient performance, review the patient performance scores. A poor score often indicates a task that is unlikely to find activation clusters.
 - → Discuss patient performance with the fMRI coordinator or MRI technologist to gather better insight into a poor score.
 - A 50% score could be the result of poor overall performance OR result from 100% correct on the active task and 0% correct on the control task. (Fig 7)

Provided for educational use by Prism Clinical Imaging, Inc.

the framework on which a clinical fMRI program can be developed.

Patient Training:

 \rightarrow

 \rightarrow

(c) RSNA

 At our institution, patient training is typically performed by a physician who serves as our fMRI coordinator or, if the physician is unavailable, a qualified MRI technologist.

Multiple steps are necessary for optimization of a functional magnetic

resonance imaging (fMRI) study. These include patient training, fMRI scan

acquisition, data post-processing, and quality assurance (QA) as well as

image interpretation. Attention to detail is key. A high quality scan is the

result of the cumulative effect of multiple factors which occur during each

of these steps. Our aim is to outline how a typical fMRI scan is acquired at

our institution, beginning with patient training and continuing through data

post processing and QA. Finally, we will discuss a few pearls that we find

helpful to keep in mind during image interpretation. This poster is by no

means a comprehensive review of clinical fMRI, but, rather, should serve as

- The patient's clinical history and prior imaging should be reviewed prior to training and image acquisition.
 - Tasks may be added or removed based on lesion location. For instance, adding an auditory task for a lesion near Heschl's gyrus. (Fig 1.1)
 - → Performed in conjunction with the neuroradiology fellow and/or attending on the fMRI service for the day.
- Ask the patient what symptoms they are experiencing.
 - → Focus on paradigms with expected activation nearby.
 - → If patients have weakness in a limb, paired tasks such as bilateral finger tapping can be separated into different right finger/left finger tasks.
 - → Patients with leg paralysis can imagine moving leg. Alternatively, touch or movement may generate passive tactile or proprioception activation, albeit weaker than active tasks.
- Training should be tailored to a patient's cognitive skills/aptitude.
 - A patient with impaired cognition or difficulty learning tends to perform better with more practice.
 - A patient with normal cognition and intact learning often performs better following a brief training session.
- Tasks should be performed using a language in which the patient is fluent.
 - → A native Tagalog speaker (Philippines) was able to perform tasks and achieve robust language activation. (Fig 1.2)
 - When unable to read in scanner (for any reason), can do motor task with colors: green (go) and red (stop).
 - Establish a rapport with the patient and answer all questions. → An informed patient is a motivated patient.

