

Decoding social knowledge in the human brain

Daniel Alcalá-López¹, David Soto^{1,2}

¹Basque Center on Cognition, Brain and Language (BCBL), Donostia – San Sebastian, Spain ²Ikerbasque, Basque Foundation for Science, Bilbao, Spain

Decoding the brain representation of social concepts

Affective-state concepts

		Sum of Squares	df	Mean Square	F	р	ω²	
rtition CV	Affect	0.086	8	0.011	19.505	< .001	0.244	
	Likableness	0.240	8	0.030	30.888	< .001	0.267	
ltem CV	Affect	0.040	8	0.005	8.195	< .001	0.240	
	Likableness	0.176	8	0.038	23.531	< .001	0.218	

Figure 1. Distribution of ratings of social concepts. Participants read each concept definition and rated whether they described a behaviour involving the emotions of oneself or others (affect; red) as well as whether such behaviour was socially likable(grey) on a scale from 0 (very nonaffective; very unlikable) to 100 (very affective; very likable).

A repeated-measures ANOVA with and dimension of social information likableness) showed a significant dimension for both the cross-validation

n two factors: ROI			Sum of Squares	df	Mean Square	F	р	ω ²
$n (i \rho) affect vs$	Partition CV	ROI	0.289	8	0.036	39.395	< .001	0.314
main affact of		Dimension	0.034	1	0.034	7.801	0.009	0.054
ation procedures.		ROI * Dimension	0.037	8	0.005	7.640	< .001	0.056
		ROI	0.171	8	0.033	27.657	< .001	0.334
	ltem CV	Dimension	0.033	1	0.033	2.938	0.097	0.043
01		ROI * Dimension	0.045	8	0.009	7.281	< .001	0.105

p < .05

01. > q

p adjust: FDR

N.S.

N.S.

 \bigcirc Post hoc paired t-tests showed that the interaction effect was driven by the ACC ($t_{(29)}$ = 4.461, p = 0.001, d = 0.814), with a preference for likableness when using the partition-level CV. On the other hand, the effect was driven by the lns ($t_{(29)} = -4.623$, p = 0.001, d = 0.844), with a preference for *affect* instead when using the item-level CV.

Paired *t*-tests showed that mean classification accuracy was significantly higher in semantic ROIs for both *affect* ($t_{(29)}$ = 5.590, *p* < .001, *d* = 1.021) and *likableness* $(t_{(29)} = 5.113, p < .001, d = 0.933)$ using partition-level crossvalidation. Similarly, mean decoding accuracy was higher in semantic ROIs for both affect ($t_{(29)}$ = 2.519, *p* = 0.018, *d* = 0.460) and likableness ($t_{(29)}$ = 4.133, p < .001, d = 0.755) using item-level crossvalidation.

Figure 3. Decoding accuracy of social concepts in semantic vs. social ROIs. Comparison of average decoding accuracy in semantic ROIs with social ROIs using both the partition- and item-level CV procedures. The shaded area indicates the mean empirically estimated chance level (mean = 0.53).

Statistical analysis

- Preprocessing: (i) non-brain tissue removal (BET); (ii) volume realignment (MCFLIRT); (iii) gaussian kernel (FWHM = 3mm) for spatial smoothing; (iv) ICAbased automatic removal of motion artefacts; (v) temporal filtering (high-pass; cutoff = 60s); (vi) coalignment of each session to the 1st session.
- Classification: SVM-based linear classifier to decode the brain representation of social knowledge regarding: (i) their *likableness* (high vs. low) and (ii) their affect (high vs. low). We used a PCA-based feature selection within each ROI.
- Cross-validation: (i) we used partitions of the stacked BOLD data as left-out samples to test the classifier. (ii) we also used entire items (i.e. concepts) as left-out sample for testing to better ensure out-of-sample generalization.
- <u>Chance level</u>: we trained a classifier on samples with randomly shuffled labels and tested on samples labelled appropriately to empirically estimate chance level performance and used paired *t*-tests to assess statistical significance.
- Statistical significance: decoding performance at the group level was estimated with (i) two repeated-measures ANOVAs with one factor (ROI) to compare ROIs; (ii) with a repeated-measures ANOVA with two factors (ROI and *affect* vs. *likableness*) to analyse whether some ROIs were biased towards decoding the affect or likableness; and (iii) paired *t*-tests to compare the average decoding accuracy in semantic ROIs compared with social ROIs.
- Regions of interest: based on previous studies on semantic (JR Binder et al. 2009 Cereb Cortex) and social information processing (D Alcalá-López et al. 2017 Cereb Cortex):
 - + 3 semantic regions (lateral temporal lobe, LTL; inferior frontal gyrus, IFG; and precuneus, Prec)
 - + 3 social regions (insula, Ins; anterior cingulate cortex, ACC; posterior cingulate cortex, PCC)
 - + 2 semantic & social regions (anterior temporal lobe, ATL; anterior prefrontal cortex, aPFC)
 - + 1 control region (primary visual cortex, V1)

Take-home messages

- While previous evidence have analysed temporal correlations between the time series of different ROIs, here we used a pattern classification approach showing these distributed ROIs actually contain information relevant to distinct aspects of social knowledge, beyond just showing activation related to the processing of social information.
- Our results don't support a modular view of the representation of social concepts. Rather, they are consistent with the idea that socially relevant knowledge relies on a widely distributed brain network.

Alcalá-López, D., Smallwood, J., Jefferies, E., Van Overwalle, F., Vogeley, K., Mars, R. B., ... & Bzdok, D. (2017). Computing the social brain connectome across systems and states. Cerebral cortex, 28(7), 2207-2232. | Anderson, N. H. (1968). Likableness ratings of 555 personality-trait words. Journal of personality and social psychology, 9(3), 272. | Binder, J. R., Desai, R. H., Graves, W. W., & Conant, L. L. (2009). Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cerebral Cortex, 19(12), 2767-2796. | Haxby, J. V. (2012). Multivariate pattern analysis of fMRI: the early beginnings. Neuroimage, 62(2), 852-855. | Ghio, M., Vaghi, M. M. S., Perani, D., & Tettamanti, M. (2016). Decoding the neural representation of fine-grained conceptual categories. Neuroimage, 132, 93-103. | Wang, Y., Collins, J. A., Koski, J., Nugiel, T., Metoki, A., & Olson, I. R. (2017). Dynamic neural architecture for social knowledge retrieval. *Proceedings of the National Academy of Sciences*, 114(16), E3305-E3314.