Intracranial stereotactic EEG study of crossmodal influences in human auditory cortex

Jyrki Ahveninen ^{1*}, liro P. Jääskeläinen ^{2,3*}, Hsi-Jun Lee ^{4, 5}, Hsiang-Yu Yu ^{6,7}, Cheng-Chia Lee ^{7,8}, Chien-Chen Chou ^{6,8}, Seppo P. Ahlfors ¹, Wen-Jui Kuo ⁹, Fa-Hsuan Lin ^{2, 4, 5}

¹Harvard Medical School – Athinoula A. Martinos Center for Biomedical Imaging, Dept. Radiology, Mass. General Hospital, Charlestown, MA, USA; ² Brain and Mind Laboratory, Dept. Neurosci. Biomed. Engin., Aalto University School of Science, Espoo, Finland; ³ Intl. Soc. Neurosci. Lab., Inst. of Cogn. Neurosci., Natl. Res. Univ. Higher School of Economics, Moscow, Russia; ⁴ Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada; ⁵ Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; ⁶ Department of Epilepsy, Neurological Institute, Taipei, Taiwan; ⁷ School of Medicine, National Yang Ming University (NYMU), Taipei, Taiwan; ⁸ Department of Neurosurgery, Neurological Institute, TVGH, Taipei, Taiwan; ⁹ Institute of Neuroscience, NYMU, Taipei, Taiwan; * Authors JA and IPJ contributed equally.

Introduction

Crossmodal visual influences occur already at early stages of human auditory cortex (AC) processing. The mechanisms and role of these effects are still unclear.

Conservative hypothesis: Crossmodal visual influences modulate sound processing, but do not directly activate human AC neurons.

Alternative hypothesis: Based on certain single-unit animal models, visual stimuli could trigger AC firing patterns, which may even carry information of the non-auditory stimulus.

Method

Stimuli: 300-ms noise bursts (auditory, A), checkerboards (visual, V), and noise burst + checkerboard combinations (audiovisual, **AV**).

Intracranial stereotactic EEG (SEEG) in 8 patients undergoing preoperative monitoring.

SEEG loci determined by clinical criteria: one bilateral, 4 lefthemisphere, and 4 right-hemisphere implantations.

Measure of interest: intracranial 65-240 Hz high broadband gamma (HBG) activity, potential correlate of firing activity.

SEEG inverse modeling to facilitate anatomically normalized group analyses in four regions of interest (ROI, Fig. 1).

Heschl's gyrus IPS:

~ core-to-belt AC

pSTG: post. superior temp. gyrus ~ *belt/parabelt AC* mSTS: mid. superior temp. sulcus ~ parab./polymodal intraparietal sulcus ~ polymodal

Figure 1. Examples of SEEG electrode contact placements and the ROIs used in inverse modeling. Red dots: temporal electrode T contacts; Purple dots: other contacts.

HBG activity was highly robust and statistically significant

after A and AV stimuli, but weak after V stimuli, in superior temporal AC areas (Fig. 2).

Visually-induced HBG activity emerged is ROIs overlapping auditory association and polymodal processing areas.

Figure 3. Time-frequency of interest analysis of MSIs of low gamma and HBG activity. The post-stimulus power values were averaged at 100-450 ms within the two frequency ranges. Significant MSIs were found only at the low gamma range. **p*<0.05, ****p*<0.001; two-tail t-test. Error bars show the standard error of mean.

Figure 4. Source-estimate data in two representative individual subjects, analyzed from HG and mSTS. The data show \log_{10} normalized power relative to the pre-stimulus baseline.

Super-additive multisensory interactions (MSI), defined as AV>A+V, were not observed in HBG activity estimates in ACs and other ROIs studied (Figure 3).

Evidence of super-additive MSIs was , however, found at the low gamma range (30-55 Hz) in the areas pSTG and IPS.

Conclusion

- No evidence of robust and statistically significant HBG activity triggered by visual stimuli in ACs.
- This finding was consistent in group analyses of source estimates and individual-level SEEG contact data.
- Assuming that intracranial "non-oscillatory" HBG activity is a correlate of local firing, our results suggest that crossmodal visual inputs trigger mainly modulatory effects in or near ACs.

Acknowledgements

Supported by NIDCD grants R01DC017991, R01DC016765, R01DC016915 (JA, SPA, WJK, FHL); Academy of Finland grants 276643, 298131, 308431 (IPJ, FHL); Russian Federation Government grant ag. #075-15-2019-1930 (IPJ).

Figure 5. SEEG electrode data in two representative individual subjects. In both subjects, the contact T1 is in medial HG. The contacts T7 of Subject 1 and T6 of Subject 2 are in or near mSTS (see Fig 1). Note the considerable resemblance between the source models in Fig. 4 and these SEEG data. The data show \log_{10} normalized power relative to the pre-stimulus baseline.

Figures 4 and 5 show examples of gamma-band activity to A, AV, and V stimuli in two representative subjects.

The source estimates of HBG (Fig. 4) were remarkably consistent with those analyzed from the intracranial SEEG contacts from the same areas (Fig. 5).

• Super-additive MSI effects (AV>A+V) were observed at the lower gamma band range (below 55 Hz) in pSTG (non-primary AC) and the polymodal IPS.

• Source modeling of SEEG data could provide a feasible method for anatomically normalized group analyses of intracranial neurophysiological recordings in humans.