

1. Grady Health System; Atlanta, Georgia 2. Emory University School of Medicine; Atlanta, Georgia

INTRODUCTION

- Large burn resuscitation is a cornerstone of ICU care in the burn unit
- Large burns cause a systemic inflammatory response in the entire body leading to profound capillary leak, tissue edema and hemodynamic instability, a condition known as burn shock
- Different formulas have been studied to estimate fluid needs during the first 24hrs, including the Parkland formula (4ml/kg/%TBSA) and modified Brooke formula (2ml/kg/%TBSA)
- Additionally, resuscitation adjuncts including colloids and ascorbic acid infusions have been studied to decrease crystalloid requirements and prevent "fluid creep"
- Concerns of over-resuscitation include pulmonary edema and compartment syndrome
- The purpose of this study was to retrospectively evaluate burn resuscitation practices of large burns (20% TBSA and greater) and their associated outcomes at a large urban burn center

METHODS

Design

- A retrospective, IRB approved chart review of a prospectively maintained burn unit database was conducted and included adult patients admitted to the Grady Health System (GHS) burn ICU with burns of 20% TBSA or greater who survived the first 48hrs of admission
- Descriptive statistics were utilized

Primary outcome

• Evaluating the percentage of patients who received resuscitation according to predetermined volume ranges (< or equal to 4ml/kg/% TBSA vs >4ml/kg/%TBSA)

Secondary outcomes

- Use of adjuncts (colloids and ascorbic acid)
- Markers of over- and under-resuscitation
- Use of perfusion markers to guide resuscitation
- ICU and hospital length of stay

Evaluation of burn resuscitation practices at a large academic burn center Rita Gayed, PharmD¹; Tu-Trinh Tran, PharmD; Ansley Tidwell, PharmD; Juvonda Hodge, MD²; Walter Ingram, MD²

RESULTS

Patient Characteristics (N=151)	≤ 4 ml/kg/%TBSA (n=89)	> 4 ml/kg/%TBSA (n=62)	P-value
Male gender, n (%)	70 (79)	43 (62)	NS
Age in years, median [IQR]	43 [31 – 55]	49 [34 – 62]	NS
Admission weight in kg, median [IQR]	81 [68 – 106]	76 [68 – 89]	0.018
Significant co-morbidities, n (%)			
• Congestive heart failure (CHF)	1 (1)	4 (6)	NS
• End-stage renal disease (ESRD)	1 (1)	0	NS
Chronic kidney disease (CKD)	0	2 (3)	NS
Alcohol use	7 (8)	2 (3)	NS
Thermal burn injury, n(%)	79 (89)	59 (95)	NS
%TBSA burns, median [IQR]	36 [26 – 53]	37 [30 – 50]	NS
Inhalation injury, n (%)	29 (33)	23 (37)	NS
Type of crystalloid resuscitation, n (%)			
Lactated Ringer's	79 (89)	60 (97)	NS
• 0.9% NaCl	32 (36)	23 (37)	NS
Plasmalyte	2 (2)	1 (2)	NS

Figure 4. Achievement of goal perfusion markers (N=151)

RESULTS

- Protocolized monitoring of resuscitation markers is key to tailoring resuscitation efforts to patient's individual response. The effect of the different adjunct therapies (colloids, ascorbic acid) should be further investigated.
- Limitations of this study include its retrospective and single center nature, documentation errors (especially omissions)
- Future directions include further analyses of therapy effect of adjunct therapies (colloids and ascorbic acid)

•	Cope, O. et
•	Ahrns, K. S
•	Barrow, R.
•	Kirkpatrick,
•	Haberal M,
•	Dries, D. J.
•	Hayek, S.,
	disasters 2
•	Holm, C., e
•	Lavrentieva
•	Cancio, L. (
•	Cochran_A
•	De Barros.

Figure 6. Complications of over-resuscitation (N=151)

comes (N=151)	≤ 4 ml/kg/%TBSA (n=89)	> 4 ml/kg/%TBSA (n=62)	P-value
stay in days, median [IQR]	16 (8 – 16)	36 (14 – 62)	0.001
h of stay in days, median	27 [13 – 52]	39 [20 – 68]	0.007
ospital mortality, n (%)	35 (40)	24 (39)	0.958

CONCLUSIONS

- Patients who received median resuscitation volumes of ~
- 3ml/kg/%TBSA had better outcomes compared to patients who received higher volumes

REFERENCES

- t al. Annals of surgery 1947, 126(6), 1010.
- . Critical care nursing clinics of North America 2004, 16(1), 75-98.
- E., et al. Resuscitation 2000 45(2), 91-96.
- A.W., et al. World J Surg 2009, 33: 1142.
- et al. Indian J Plast Surg. 2010;43(Suppl):S29-36.
- et al. Critical care medicine 1991, 19(3), 327-329
- et al. Burn resuscitation: is it straightforward or a challenge?. Annals of burns and fire *D11*, *24*(1), 17.
- t al. Burns 2004, 30(8), 798-807.
- , A. et al. Burns 2011, 37(2), 196-202.
- et al. Journal of Trauma and Acute Care Surgery 2004, 56(2), 404-414.
- , et al. Journal of Burn Care & Research 2007, 28(2), 231-240.
- M. et al. Journal of Burn Care & Research 2017, 38(4), e691-e698.