Simplified approach to incorporating glycemic response within a continuous insulin infusion algorithm to improve incidence of hypoglycemia in a single burn center. Hayden A. Hendrix, PharmD¹; Sai R. Velamuri, MD^{1,2}; Ibrahim Sultan-Ali, MD^{1,2}; Faisal Arif, MD¹; William L. Hickerson, MD, FACS^{1,2}; David M. Hill, PharmD, BCPS, BCCCP^{1,3} 1-Regional One Health, Memphis, TN; University of Tennessee Health Science Center, 2-College of Medicine, & 3-College of Pharmacy, Memphis, TN

BACKGROUND

Background

- A recent single center evaluation of continuous insulin infusion (CII) protocols revealed four were in use, a 0.6 percent hypoglycemic rate, and two-thirds of patients experiencing at least one incident¹
- The authors speculated consolidation to a single algorithm accounting for hourly glucose change would facilitate improvement
- The algorithm evolved through six iterations over two years

Objective

• Assess the post-implementation impact on hypoglycemia and glycemic control of the single, dynamic insulin infusion algorithm

METHODS

- Dual Institutional Review Board approval
- Retrospective, single burn center, electronic chart review

Inclusion Criteria

- Admitted between August 1, 2016 and August 31, 2018
- Received a CII

Exclusion Criteria

- Less than 18 years of age
- Received less than 24 hours of CII
- Incorrect CII protocol selected
- Incomplete or missing data

Statistical Analysis

- SigmaPlot 11.2
- Nominal data analyzed by Fisher's exact test
- Mann-Whitney U test or student's t-test for continuous data

RESULTS

Included

Twenty-seven patients met inclusion criteria

Excluded

- Four patients received less than 24 hours of CII
- Two patients received a different CII protocol
- One chart had incomplete data

RESULTS

Demographics					
	Pre-Implementation (n = 32)	Post-Implementation (n = 20)	p value		
Age (years) ^a	51.8 ± 17	58.9 ± 17.5	0.15		
Male ^c	18 (56)	14 (70)	0.49		
Weight, kg ^a	95.0 ± 27.4	87.4 ± 26.7	0.33		
Caucasian ^c	17 (53)	10 (50)	0.95		
% TBSA ^b	25 (14, 55)	21 (8.3, 40.6)	0.19		
Thermal injury ^c	18 (56)	16 (80)	0.15		
Inhalation injury ^c	7 (22)	3 (15)	0.72		
	17 (11, 28)	15 (12, 22)	0.53		
Diabetes ^c	19 (59)	13 (65)	0.91		
Hemoglobin A1c (%) ^b	7.2 (5.7, 9.2)	6 (5.6, 6.5)	0.09		
WBC (10 ³ /cm ³) ^b	13.2 (9.3, 20.5)	12.1 (8.5, 17.3)	0.58		
Albumin (g/dL) ^a	3.3 ± 0.7	3.4 ± 0.7	0.70		
Prealbumin (g/dL) ^b	9.9 (6.9, 12.8)	7.7 (5.0, 10.4)	0.19		
CRP (mg/L) ^b	11 (6.9, 19.9)	12.2 (7.6, 20.2)	0.94		
Creatinine (mg/dL) ^b	1.3 (0.7, 2.2)	1.1 (0.8, 1.6)	0.42		
Creatinine Clearance (mL/minute) ^b	84.4 (40.4, 163.2)	64.9 (50.4, 97.9)	0.28		
AKI ^c	21 (66)	11 (55)	0.64		

^a Mean ± SD

^b Median (interquartile range)

^c n (%)

Secondary Outcomes						
	Pre-Implementation (n = 32)	Post-Implementation (n = 20)	p value			
Hypoglycemia ^a	16 (50)	6 (30)	0.26			
Glucose < 70 mg/dL ^a	21 (66)	9 (45)	0.16			
CII duration (days) ^b	6.1 (3.1, 13.8)	7 (2.1, 14.8)	0.28			
Insulin usage (units/hour) ^b	4.7 (3.3, 7.0)	3.8 (2.7, 5.1)	0.19			
Carbohydrate intake (g/day) b	180.0 (168.0, 204.5)	121.0 (109.1, 165.3)	< 0.001			
Survived ^a	21 (66)	9 (45)	0.16			
Infection ^a	28 (88)	19 (95)	0.64			
Length of stay (days) ^b	27.5 (19, 59)	41.5 (23, 59)	0.49			

^a n (%)

^b Median (interquartile range)

20 patients post exclusions

- 5,239 point-of-care glucoses assessed
- Hypoglycemia rates were significantly lower post implementation (0.6% vs 0.2%, <0.001)
- Twenty percent decrease in number of patients that experienced a hypoglycemic event post-implementation
- One hour/day more spent within goal glycemic range was not statistically significant

Hypoglycemia ^{b,c} Glucose < 70 mg/dL ^c Serum glucose (mg/dL)

Time within 70-149 mg/dL (hours/day) ^e

- ^a Point-of-care blood glucoses
- ^b Blood glucose < 60 mg/dL
- ^c n (%)
- ^d Median (interquartile range) ^e Mean ± SD

- Time to achieve goal glycemic range was not excessive, but several patients required large initial infusion rates
- Excessively elevated initial glucoses seen possibly warrant incorporation of a series of insulin boluses at initiation of CII for further improved glycemic control
- Per algorithm, CIIs are held for glucose < 100 mg/dL and glucose monitoring changes to every 30 minutes until \geq 100 mg/dL and resuming CII at half the previous rate
- For all instances of held infusions, only 3 % had follow up glucoses within 30 minutes.
- Frequency of delayed follow up glucose monitoring possibly lead to rebound hyperglycemia
- 200 mg/dL

- Consolidation, education, and implementation of a single, dynamic CII algorithm successfully reduced hypoglycemia
- Education and diligence with follow up monitoring will likely further improve time within goal glycemic range by preventing significant rebound hyperglycemia
- This simplified approach can be utilized within other centers and populations without additional equipment or cost burden

- . Hill DM, Lloyd S, Hickerson WL. Hospital Pharmacy 2018 2. Hemmila MR, Taddonio MA, Arbabi s et al. Surgery 2008 3. Murphy CV, Coffey R, Cook CH et al. J Burn Care Res 2011 Finfer S, Chittock DR, Su SY et al. N Engl J Med 2009 5. Dickerson RN, Hamilton LA, Connor KA et al. Nutrition 2011

Disclosure interest in the subject matter of this presentation: Authors have no disclosures

RESULTS

Glycemic Outcomes				
Pre-Implementation (n = 6540) ^a	Post-Implementation (n = 5239) ^a	p value		
38 (0.6)	9 (0.2)	< 0.001		
77 (1.2)	24 (0.5)	< 0.001		
149.9 (144.3, 162.9)	146.5 (141.8, 155.2)	0.56		
13.8 ± 2.9	14.7 ± 1.9	0.23		

DISCUSSION

• Twenty percent demonstrated rebound glucoses surpassing

CONCLUSIONS

REFERENCES

Authors of this presentation have the following to disclose concerning possible financial or personal relationships with commercial entities that may have a direct or indirect