

Current utilization of a fixed 40 mg twice daily regimen of enoxaparin for VTE prophylaxis is inadequate to meet target prophylactic peak plasma anti-Xa levels in the obese burn patient population

INTRODUCTION

- Burn injured patients are at high risk of thromboembolic complications
- Inadequate prophylactic enoxaparin dosing in the surgical patient population has been associated with an increase in venous thromboembolism (VTE) events
- Previous studies have shown that acutely burned patients require higher than standard dosing of enoxaparin for VTE prophylaxis
- Factors such as BMI, gross weight, renal function and % total body surface area (%TBSA) have been shown to affect enoxaparin metabolism and impact overall enoxaparin dosing
- Recent evidence supports the use of anti-Xa guided enoxaparin dosing for prevention of VTE in high risk populations, including burns
- Paucity of data evaluating anti-Xa guided prophylaxis specifically in obese burn patients

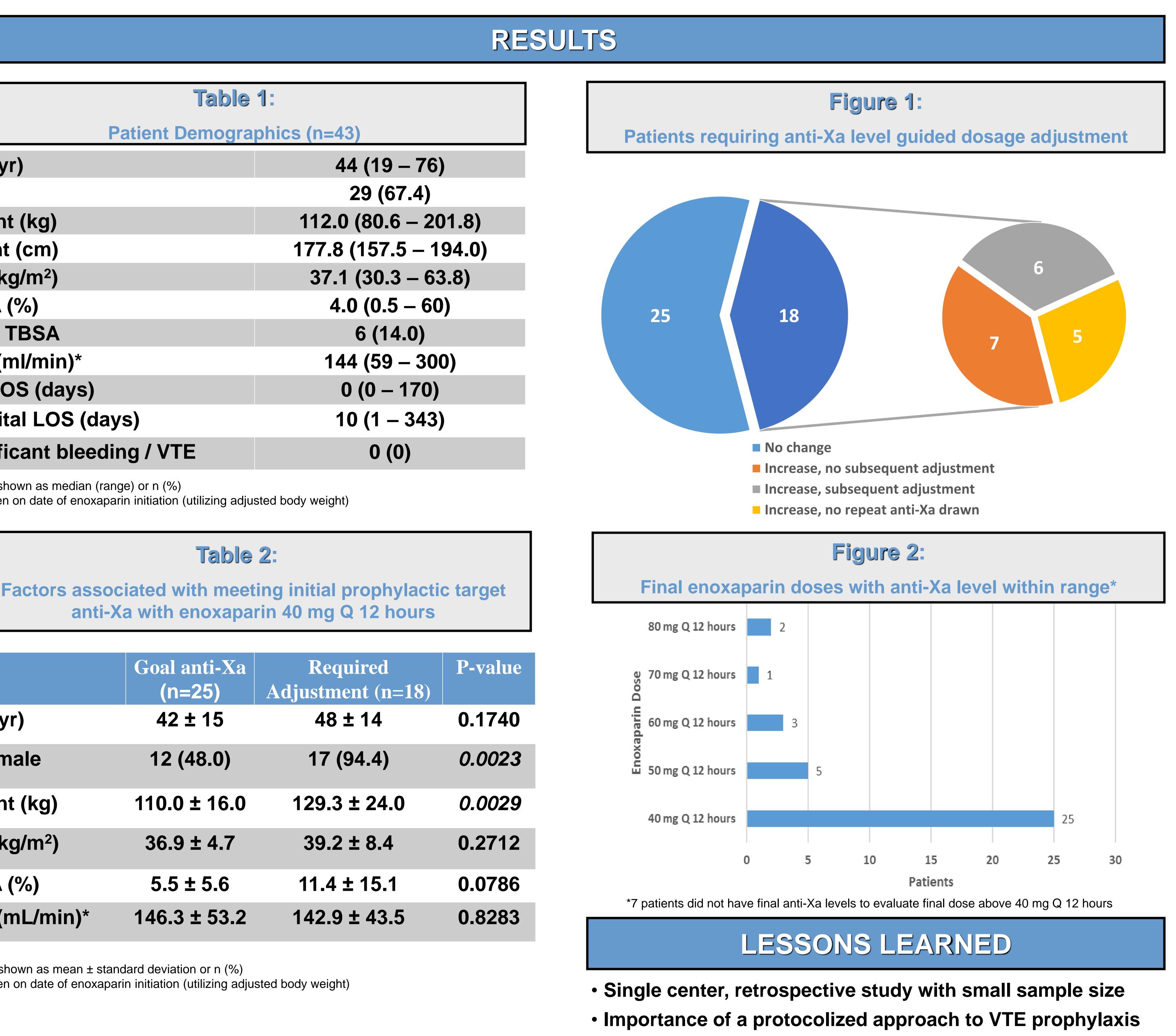
METHODS

- Retrospective, single-center study with patient data points collected from electronic medical record review and burn registry database (November 2018- September 2019) after initiation of an enoxaparin dosing protocol for VTE prophylaxis in obese burn patients
- Inclusion criteria: ≥18 years of age, body mass index (BMI) \geq 30 kg/m² or \geq 100 kg, received at least three sequential doses of enoxaparin with appropriately timed peak plasma anti-Xa levels (3-5 hours after last dose)
- Exclusion criteria: pregnancy, CrCl <30 ml/min, dialysis, treatment dose enoxaparin, non-thermal injuries, inappropriate timing of peak plasma anti-Xa levels
- Statistical analysis was performed with student's t-test for continuous data and Fisher's exact test for categorical data

Single Center Experience with Venous Thromboembolism Prophylaxis for Obese Burn Patients

CONCLUSION

	Tab
	Patient Demog
Age (yr)	
Male	
Weight (kg)	
Height (cm)	
BMI (kg/m ²)	
TBSA (%)	
>20% TBSA	
CrCl (ml/min)*	
ICU LOS (days)	
Hospital LOS (da	ays)
Significant bleed	ling / VTE


Data are shown as median (range) or n (%) *CrCl taken on date of enoxaparin initiation (utilizing adjusted body weight)

	Goal anti-X (n=25)
Age (yr)	42 ± 15
Sex, male	12 (48.0)
Weight (kg)	110.0 ± 16.
BMI (kg/m ²)	36.9 ± 4.7
TBSA (%)	5.5 ± 5.6
CrCl (mL/min)*	146.3 ± 53.

Data are shown as mean \pm standard deviation or n (%) *CrCl taken on date of enoxaparin initiation (utilizing adjusted body weight)

Brian McKinzie PharmD¹, Rabia Nizamani MD², Samuel Jones MD², Felicia Williams MD² ¹UNC Medical Center Pharmacy Services, ²UNC Medical Center Department of Surgery

Dose adjusting enoxaparin to target peak plasma anti-Xa levels to reduce VTE rates in obese burn patients should be further evaluated

SIGNIFICANCE

Consider weight-based/higher fixed dosing in patients ≥ 120 kg