
SQL SERVER QUERY TUNING
A 12-Step Program

By Thomas LaRock, Technical Evangelist and Head Geek

page 1

WHITEPAPER: SQL SERVER QUERY TUNING: A 12-STEP PROGRAM

Query tuning is a powerful tool for DBAs and developers alike in improving SQL
Server performance. Unlike measures of system-level server performance (memory,
processors, and so on), query tuning puts the focus on reducing the amount of
logical I/O in a given query, because the fewer I/Os, the faster the query. In fact,
some performance issues can only be resolved through query tuning, and focusing
on system resources can lead to expensive and unnecessary hardware investments
that don’t in the end make the query faster.

Yet many DBAs struggle with query tuning. How do you assess a query? How can
you discover flaws in the way a query was written? How can you uncover hidden
opportunities for improvement? How can you be certain that making a specific
alteration actually improves the speed of the query? What makes query tuning as
much an art as a science is that there are no right or wrong answers, only what is
most appropriate for a given situation.

This paper demystifies query tuning by providing a rigorous 12-step process that
database professionals at any level can use to systematically assess and adjust query
performance, starting from the basics and moving to more advanced query tuning
techniques like indexing. When you apply this process from start to finish, you will
improve query performance in a measurable way, and you will know that you have
optimized the query as much as is possible.

ALWAYS START WITH THE BASICS OF QUERY ANALYSIS

When asked to fix a slowly running query, experienced DBAs frequently skip directly to examining

execution plans, and then run the query only to be surprised at how long it takes to return data.

At that point, there is sometimes a realization that the table is really quite large. This is why I always

advise to start with the basics—knowing exactly what you’re dealing with before you dive in.

1. Know your tables and rowcounts

First, make sure you are actually operating on a table, not view or table-valued function.

If it’s a view, you need the view definition. Table-valued functions have their own performance

implications.

Hint: You can use SSMS to hover over query elements to examine these details.

INTRODUCTION

page 2

WHITEPAPER: SQL SERVER QUERY TUNING: A 12-STEP PROGRAM

Check the rowcount by querying the DMVs (see example below). If, for example, the query was

built and tested in a development environment, but is being run in a production environment

for the first time, the actual rowcount may be significantly higher.

2. Examine the query filters. Examine the WHERE and JOIN clauses
and note the filtered rowcount

Tip: If there are no filters, and the majority of table is returned, consider whether all that data is

needed. If there are no filters at all, this could be a red flag and warrants further investigation.

This can really slow a query down.

3. Know the selectivity of your tables

Based upon the tables and the filters in the previous two steps, know how many rows you’ll be

working with, or the size of the actual, logical set. We recommend Dan Tow’s SQL Tuning for a

robust discussion of selectivity and the use of SQL diagramming as a powerful tool in assessing

queries and query selectivity.

page 3

WHITEPAPER: SQL SERVER QUERY TUNING: A 12-STEP PROGRAM

This is important specifically for RIGHT, LEFT and OUTER joins. You should have a good under-

standing of when the predicate is applied so you can be sure you’re starting with the smallest

possible set and the filters are getting applied early enough.

4. Analyze the additional query columns—the extra things outside
of the filters and JOINs

Examine closely the SELECT * or scalar functions to determine whether extra columns are in-

volved. Is there CASE, CAST, CONVERT happening in the WHERE clause? Is it SARGable (is the

index searchable)? Are there sub-queries? The more columns you bring back, the less optimal it

may become for an execution plan to use certain index operations, and this can, in turn, degrade

performance.

CONTINUE ON TO MORE ADVANCED QUERY ANALYSIS

5. Review the existing keys, constraints, indexes to make sure you avoid
duplication of effort or overlapping of indexes that already exist

Know and use these constraints because they can be very helpful as you start to tune.

What is the primary key definition? Is that key also clustered? If you have a wide clustered key,

you must also copy the key over to your non-clustered indexes, which means more pages you

have to read into the buffer pool to solve the query.

If you’re not using foreign key constraints, consider whether they will work in your data model.

The optimizer can make use of foreign key constraints to make better execution plans, which will

help the query run faster.

To get information about your indexes, run the sp_helpindex stored procedure:

Note, however, that the included columns are not included! If you need that information, you’ll

need to use a different query.

page 4

WHITEPAPER: SQL SERVER QUERY TUNING: A 12-STEP PROGRAM

6. Examine the actual execution plan (not the estimated plan)

Estimated plans use estimated statistics to determine the estimated rows; actual plans use actual

statistics at runtime. If the actual and estimated plans are different, you may need to investigate

further.

Note that at this step, you will want to set statistics on (SET STATISTICS IO ON and SET STASTICIS

TIME ON).

7. Record your results, focusing on the number of logical I/Os

This is an especially important step, and one that many DBAs will skip; if you don’t record the

results, you won’t be able to determine the true impact of your changes alter on.

8. Adjust the query based on what you’ve found, making small, single
changes one at a time

If you make too many changes at one time, you may find the changes cancel each other out!

Begin by looking for the most expensive operations first. There is no right or wrong answer, but

only what is optimal for the given situation (note that all of these will be affected by out-of-date

statistics).

Some of the potentially expensive operations you might encounter include:

 » Data transfers from one operation to the next. Is the actual number of rows much larger than

the estimated? If estimates are off from actuals, it may indicate a need for further investigation.

page 5

WHITEPAPER: SQL SERVER QUERY TUNING: A 12-STEP PROGRAM

 » Are seeks or scans more expensive in this specific scenario? Contrary to common belief, a

table scan may be less expensive than a seek, in some instances. For example, if the table is

very small, SQL Server will read the whole table into memory regardless, and so a seek isn’t

necessary.

 » Is parameter sniffing an issue (parameter sniffing results from re-using a previously cached

plan that has been optimized for parameter values from the original execution, and those

parameters may be very different)? Is it using local variables?

 » Are there spool operations (a result set is stored in tempdb for use later), and if so, are they

necessary?

 » Which is better in the situation: LOOP, MERGE or HASH joins? It will depend on the specific

circumstances and the statistics the optimizer is using.

 » Are there lookups, and if so, are they necessary?

9. Re-run the query and record results from the change you made

If you see an improvement in logical I/Os, but the improvement isn’t enough, return to step 8 to

examine other factors that may need adjusting. Keep making one change at a time, rerunning the

query and comparing results until you are satisfied that you have addressed all the expensive

operations that you can.

10. If at this point you believe the query is written as well as it possibly
could be and you still need more improvement, consider adjusting
the indexes to reduce logical I/O

Adding or adjusting indexes isn’t always the best thing to do, but if you can’t alter the code, it

may be the only thing you can do.

 » Consider the existing indexes. Are they being used effectively? Focus on those tables with the

lowest selectivity first.

 » Consider a covering index—an index that includes every column that satisfies the query. Be sure

to first examine the Delete/Update/Insert statements: what is the volume of those changes?

 » Consider a filtered index (SQL Server 2008 and later)—a non-clustered index that has a pred-

icate or WHERE clause. But be aware that if you have a parameterized statement or local

variables, the optimizer can’t use the filtered index.

11. If you made adjustments in step 10, re-run the query
and record results

page 6

WHITEPAPER: SQL SERVER QUERY TUNING: A 12-STEP PROGRAM

12. Finally, engineer out the stupid—that is, eliminate these frequently
encountered inhibitors of performance whenever possible:

 » Be aware that code-first generators (for example, EMF, LNQ, nHibernate) can bloat plan cache.

Tip: Consider turning on OPTIMIZE FOR AD HOC WORKLOADS if you are using
code-first generators.

 » Look for abuse of wildcards (*), which can result in pulling back too many columns.

 » Scalar functions and multi-statement functions get called for every row that gets returned,

and can be abused.

 » Nested views that go across linked servers can add processing. time.

 » Cursors and row-by-row processing can slow processing down.

 » Join/query/index/table hints can significantly change how a query works. Use these only if you

have exhausted all other possibilities.

USE A DATABASE PERFORMANCE MONITORING SOLUTION
TO FACILITATE QUERY TUNING

You can make query tuning significantly easier by using a continuous database performance

monitoring solution such as SolarWinds Database Performance Analyzer (DPA) to consoli-

date performance information in a single place. DPA makes it simpler for DBAs and developers

to quickly and accurately:

 » Identify the specific query that got delayed, so you know which query needs tuning

 » Identify the specific bottleneck (wait event) that causes a delay, so you can more quickly focus

your tuning efforts on the root cause of the delay

 » Show the time impact of the identified bottleneck, so you can measure the impact of any

changes you make in tuning the query

WHITEPAPER: SQL SERVER QUERY TUNING: A 12-STEP PROGRAM

page 7

©2015 SolarWinds, Inc. All rights reserved. SolarWinds®, the SolarWinds logo, ipMonitor®, LANsurveyor®,
and Orion® are among the trademarks or registered trademarks of the company in the United States
and/or other countries.All other trademarks are property of their respective owners. WP-1504

Fully Functional For 14 Days

In just four clicks, and in simple, visual charts, DPA clearly identifies the root cause of performance

issues. Unlike other solutions that may rely on TRACE to gather performance data, DPA provides

continuous 24x7 monitoring with access to historical trend data, without placing a load on the

monitored server.

HOW CAN DATABASE PERFORMANCE ANALYZER HELP?
Database Performance Analyzer (DPA) from SolarWinds (NYSE: SWI) provides the fastest way to

identify and resolve database performance issues. DPA is part of the SolarWinds family of powerful

and affordable IT solutions that eliminate the complexity in IT management software. DPA’s unique

Multi-dimensional Database Performance Analysis enables you to quickly get to the root of database

problems that impact application performance with continuous monitoring of SQL Server, Oracle,

SAP ASE and DB2 databases on physical, Cloud-based and VMware servers.

For additional information, please contact SolarWinds at 866.530.8100 or e-mail sales@solarwinds.com.

1 Dan Tow, SQL Tuning, O’Reilly Media.

http://www.solarwinds.com/register/registrationb.aspx?Program=18512&c=70150000000RdaM
http://www.solarwinds.com/database-management-software.aspx
http://www.solarwinds.com/database-management-software.aspx
mailto:sales%40solarwinds.com.%20?subject=
http://www.amazon.com/SQL-Tuning-Dan-Tow/dp/0596005733/ref=sr_1_1?ie=UTF8&qid=1371830937&sr=8-1&keywords=dan+tow

